Skip to content

Latest commit

 

History

History

face_parsing

Face parsing

A Pytorch implementation face parsing model trained by CelebAMask-HQ

Dependencies

  • Pytorch 0.4.1
  • numpy
  • Python3
  • Pillow
  • opencv-python
  • tenseorboardX

Preprocessing

  • Move the mask folder, the image folder, and CelebA-HQ-to-CelebA-mapping.txt ( remove 1st line in advance ) under ./Data_preprocessing
  • Run python g_mask.py
  • Run python g_partition.py to split train set and test set.

Training

  • Run bash run.sh #GPU_num

Well-trained model

  • The model can be downloaded here.
  • The model (model.pth) should be put under ./models/parsenet
  • Mask labels are defined as following:
Label list
0: 'background' 1: 'skin' 2: 'nose'
3: 'eye_g' 4: 'l_eye' 5: 'r_eye'
6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
9: 'r_ear' 10: 'mouth' 11: 'u_lip'
12: 'l_lip' 13: 'hair' 14: 'hat'
15: 'ear_r' 16: 'neck_l' 17: 'neck'
18: 'cloth'
  • Overall Per-pixel Acc: 93.42 ( train and evaluate according to CelebA train/test split )

Testing & Color visualization

  • Run bash run_test.sh #GPU_num
  • Results will be saved in ./test_results
  • Color visualized results will be saved in ./test_color_visualize
  • Another way for color visualization without using GPU: Run python ./Data_preprocessing/g_color.py