You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I was trying to test your code and got stuck on loading models. See full log:
Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:53:06)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> import tensornets as nets
>>> import numpy as np
>>>
>>> print(tf.__version__)
1.3.0
>>> print(np.__version__)
1.13.3
>>>
>>> inputs = tf.placeholder(tf.float32, [None, 224, 224, 3])
>>> outputs = tf.placeholder(tf.float32, [None, 50])
>>> model = nets.Inception4(inputs, is_training=True, classes=50)
>>>
>>> loss = tf.losses.softmax_cross_entropy(outputs, model)
>>> train = tf.train.AdamOptimizer(learning_rate=1e-5).minimize(loss)
>>>
>>> with tf.Session() as sess:
... nets.pretrained(model)
...
2017-11-15 21:14:22.616901: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-11-15 21:14:22.616976: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-11-15 21:14:22.617005: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-11-15 21:14:22.767544: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-11-15 21:14:22.767871: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties:
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.582
pciBusID 0000:01:00.0
Total memory: 10.91GiB
Free memory: 355.38MiB
2017-11-15 21:14:22.900139: W tensorflow/stream_executor/cuda/cuda_driver.cc:523] A non-primary context 0xbea1700 exists before initializing the StreamExecutor. We haven't verified StreamExecutor works with that.
2017-11-15 21:14:22.900342: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-11-15 21:14:22.900694: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 1 with properties:
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.582
pciBusID 0000:02:00.0
Total memory: 10.91GiB
Free memory: 400.44MiB
2017-11-15 21:14:22.900850: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0 1
2017-11-15 21:14:22.900869: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0: Y Y
2017-11-15 21:14:22.900881: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 1: Y Y
2017-11-15 21:14:22.900899: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)
2017-11-15 21:14:22.900914: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0)
Traceback (most recent call last):
File "/shared/miha/programs/miniconda3/lib/python3.5/site-packages/numpy/lib/format.py", line 640, in read_array
array = pickle.load(fp, **pickle_kwargs)
UnicodeDecodeError: 'ascii' codec can't decode byte 0xb1 in position 0: ordinal not in range(128)
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "/shared/miha/py_homebrew/tensornets/pretrained.py", line 49, in pretrained
__load_dict__[model_name](scope)
File "/shared/miha/py_homebrew/tensornets/pretrained.py", line 101, in load_inception4
return load_weights(scopes, weights_path)
File "/shared/miha/py_homebrew/tensornets/utils.py", line 166, in load_weights
values = data['values']
File "/shared/miha/programs/miniconda3/lib/python3.5/site-packages/numpy/lib/npyio.py", line 233, in __getitem__
pickle_kwargs=self.pickle_kwargs)
File "/shared/miha/programs/miniconda3/lib/python3.5/site-packages/numpy/lib/format.py", line 646, in read_array
"to numpy.load" % (err,))
UnicodeError: Unpickling a python object failed: UnicodeDecodeError('ascii', b'\xb1\xe0\xd7\xad\xdbf\x93\xae\xdcS\x90\xbe\x1d\x8f!?\x81\xdd^\xbf\x9a`\x9f=di\xae\xae \x07\x95.\xec\xcc\xc4\xbd\xa93\xaa\xae\x9d\xac\xef\xbd\xf1H<<\xa4,K?mz\xd8=RP\xcb.\xae\xad\xe1=ML\xa5.\x1e\x91\xff\xaeL\x11\xd4\xbe\xe2\xaa\xa0\xae\xd2\xeb\xa7\xbe\x84;\xb2>(\x1c\x02\xaf\x11\n\x00\xael\\\x88>\xea-Z\xbd@\'\x0f\xbdQ\x02\xb5\xae\x81n\xa5\xbe\xa5\xddU\xab"\xf8\x00/Z1\x92=v\xab\xb3.\x85\x06\xb2\xae|i\xf1\xbc\x93\xb5I?\x9c\x8b\x86\xbf\x873>=\xb9\xb9\x94\xaeQ!\x10\xaf\x00t>\xbe\xba\x80\x1c.\xa6F\x8e>\xa5\xb6\x01>\x15.S?\x01\xad]\xbe\x93\xe5\xe6.\xe3\xa2\xa2\xbe\xc2\xc7\x9c.,\xec\x10\xaf\xa5\x07\xd4=\x1e\x07\xba\xae\x8bW\x92>\x0e3h\xbe\xf3w\n\xaf\xd2s\'\xaf\x1e\xbf\x92\xbd\xa8\x82\xb8\xbd#\x12\xc6\xbc\xb9\xa2\xa1\xae\xad"t=\xae\x82G/\xb1L\xb3.\x19\xa8|\xbd<\x8f\xbb.\xaaE\x89\xae\xaco\x9c>i\x1b\x9c>\xde\x8c\x17\xbf\xa1k\x7f\xbd\xea\x13\xaa\xaet\x95^\xaf\xd0\x04\x04\xbex\xc2\x12\xafr\x08b\xbey\xe6\xb7\xbd\x1b\'\x17?\xe8\x823=p\x9e\x91.\x1byW>"\xf4\xe7\xae\xd8b\x8a\xad?]&>H\xf7\x94.\x7f\x0f\xa7>C+V\xbeP\x1f\xf2\xae+\xa1\xe3\xae\x0cC;\xbe\xa6\xe2\x95=\xac7C=\x05K\xb7\xae(\xcf\x90>\xf0(x\xae\xd0\xe3\xec\xad\xb7\xde\xe8\xbd|\x9cH\xae\xa2\x97\xae\xae\xb0e\xc9\xbe)\xb0\x9b\xbe\\\x16+>PG\xaa>\xe7\x87\xf4\xaej\x10\x98.(\\\x80>\'\x98\xab\xaeO\xcfl\xbe\x91\xf9\x87>\x03\xb68?\xe3q\xc6>\xf8P\xeb.\x92\xaa\x85>\x91\x82\x90\xaeNY\xd0\xac\x01\x8d\xcd>\xc0\x0c\xc5.\x0c<\xfb=\xaa\xa2\xe1\xbe\xb7B\x9f\xae\x95`\x8b\xae\xf5r\x13?\xc6*\n\xbf\x84\xb8M>\x8cg\x97\xae\xb6^\r\xbd\xbe\xaf\x1d\xad\xeen\xfd+\xdaT:>\xed\x17\xbc.\x1c>\xd1\xae$\x87\x9c;\'\xf6\xd6\xbe\xc5x\x05>W\x95\x14\xbe\x1a\x86\xa5\xae\x87"\x0f\xaf7Z\xfc>\xc7@\n.\x02\xcdr>\xb5\xf7o>\x1c\x13i?\xec8\x05\xbf\nM\xcc\xad\xebV\x05\xbf\x19\xfd\x0b\xae\x98\xd3\xbf\xab\x03\x04\x85=\xd9\x98\xa6\xae\x88\x8b\xe1\xbeB\x8a\xa4\xbe\xdb\xd0\xef\xae]\xa8A\xaf\x80\xad\x1e\xbeX;\x02\xbf\x0e$\x8f>^\x1a\xfd\xad\xdd\x7fm;7\x19F/\x1d\x19\xf7.v\xcd\xa2<\xbed\xe4.\xb0;\xcb\xae;}\xe1>L,P\xbeL{\xa7=\xf4\x83\xab\xbei\xe0\xc9\xae\xb4\xb5V\xaf\xde]\x89>^\x16\x15\xaf \xac\xcf\xbed\xa7\xff\xbe\x08N)?\xfd^\xfd=n\xc3\xa7.\x06\xf7\x07>\x9c\xccs\xaeU=\xc0+\xb8\x027\xbexv\xa3.\xd63J\xbe\xf0\x96\xbe;*\xc5\xe8\xae\x02X\xed\xae|E\xb4\xbek\xfa\x89\xbe\x8c\\\x98>\xc5\x97\xac\xae\x7f\\\'<\xc9Dp\xae\x0e\xa0\xbf\xad\x8f\x99\x9a\xbcF(\x12.?\x0c\x07\xaf\x0b\x17\xa2\xbeR4-\xbeJ\x99\x1d?\xb6\xa2D>\xc3K\xee\xae\xcf\x0f\xca.z%+>kz\x91\xaeX\x01\xb9\xbd\n\xd3\x80>#\xd6\xf0>\xcd8\x82>\x94k\x14/\x90\xd7\x12>\xd6\x01v\xaeQU\x04\xaf\x9e\xaa\x04?\x91\xf6\x98\xae\x1f#\r?\\\x98\x1b\xbf\x95\x8c\xa3\xad\x10`\xa6.\xed\x9e\xda>fr\x81\xbf\xa1\xeb\x1b?\x99(\x88\xae\x884\x0f\xbe(\xbc]\xadP\xe7\xf2.~\x12\xce=\xa4\xde\xb6.\x1b\x0e\xdd\xae*\xaf\x83\xbaX\xe6\xb5\xbe\x8cjH?\xcfs\x0e\xbe\x0c\x1a\xbd\xae2a\x90\xad\x8a\xbb\xc0>\xc9\x82-.\xebj:>\x85\xda\x94=\xeca&?\xd4\xa2\x81\xbe\xc4\xaa\xfa\xac\xf0o\xa8\xbe\x8e\x85\x0e\xaeL{\x87\xacR\xeb\xca\xbeA\n\x9f\xaeY[\xe2\xbe\xbek\\\xbe\x0e\xb7\xc2\xaeS\x13\t\xaf\xc0\xbc\xd5\xbd\x9a\xdeh\xbf$\x1e+?e\x00e\xaeQ\x1d=<\xb6\xf9)/c*\xb1.\xe7Io\xbd~\x94\xc2.!\xe3[.(\x98\x91>\'\x93\xe7\xbc\xd5\xa1\xad>\x82H$\xbe1k\xbc\xae%+\xfd\xad\xbe\x14\x8b>\xc0\x1a\x18\xaf\xee;<\xbe\xf4X\x82\xbe\x1e\\\xce>\x955 \xbcH\x17\xb3.\x9c\x0f\x8b==*j\xae\x02`x\xab\xbc\xdd\xe9\xbeuS\x92\xae\xe5J\xda\xbeP\x1f\xd6=\xb2\xb0\xdf\xae\xa6 \xf8\xae\x11\x85l\xbe\x9e\x8d%\xbf\xda\xdc\x1b?^\xe4\x94\xaeg\xc7\x04>\xe2w\x8e\xae_Y\r/\xe8\xe1\xc0\xbd?\xa8\xbf.\xde\x05\x88\xaek`\xc6\xbe\xaekB?\x93\xcb\\\xbf\xbc|\xce>T\xf2$.\xcc\x12y-\x96\xa4\xce\xbdn"\xb5\xae\x01\x15\x00\xbe\xb7\xf1Z>\xeeW=>\x01\xae\xa5>L\xa2\xc5.gW\x8e>\xa8\xc3\x05/\xc3\x0c\x8d-b0<\xbe\xce\xab\xb8\xae\xa2\xff\x0b\xbfR^\x02=\xaa\xe4\xe8\xaep\xaa\xfe.Y\xa8\x13?Y\xa7I>\x00t\x00\xbf?\xcd\xac\xae\xe0\xff\xad>\xe7\xf4\xee.\xbcZ\xec.+\xee\x10>\xe2\xe2\x9e.\xfd\xfa\x8f\xaew|\x0c\xbdy\xb3e?\xad\xb5\x82\xbf\xb4\xd7\xce\xbd\xa91\xaf\xae\x94t\xea\xae4\xc6:\xbem\xc3\x99-J*\x8f>\xf1\xaft>\x96f\x12>ZE\x02\xbf\xf5\xad\xb6.\x9a1\xe5\xbe\xe7\x1c\xe5.\x89\x11\xfd\xadt\xc2\x82>\x94\xcd\xb4\xae\xfbCq\xbdDd\x17\xbe\t\xaa\xdf\xaea\x9f\x04\xafx\xedH\xbe-\x9e;>D~\xd9\xbe\xea(\xaf\xae\xc7bK\xbed6\x16/N\xd8\xaa.S\x98"\xbdd\xc9\xa8.\xba8\xf0.I\x9b\xdd>S\xe2\xb7>\x90\xf4\xfe\xbe\x15\xc1\xd4\xbe\x87\x98\xbd\xae\'\x11@\xafv\xd3:\xbe\xbc \x10\xaf \xd6\xbd\xbe/>\xee\xbe\xd5\xa3\t>\x05\xcd.>6\x95\x8d.Pd\xd2=\x01\x0e\x9e.\x93\r\xf4-\xb3\x02a>\xdc\x0c\xad\xae:\xd5\x01>\xae]\x12\xbeV}\xf8\xae}\x99\xe9\xae\x1c\xb4\xca\xbeY\xb7\x80>\x02\x8bp\xbe%\x15\xb4\xae\xc7yO\xbe\xac\xfe\x83\xad\xc9\xdbl\xad_\xe4\xb7\xbc\xcd\xab\x8b.\x1d\x99\xd3\xae|\x0e\x07\xbf(\xe2\x8b\xbe=\xb1\xe1<\x9bi"?q\xb2l.\xf8\xa8\x1a\xad\xbfo\x8f\xbdx=\xb0\xae\xee^2\xbeR\xe4\x06?\x0b`)=\xb4\xc62?\xe9\xc8\xcd.\x01\xf7\xbe>\x84-\xed.Z\x01\xe2\xae\x10\x96E?\xb5Q\x99\xaeXl\xfd\xbd\xba\x1b\xa8>\xdex\x9a\xae1\x86\xad.\'fR?\xff!H\xbe\x86\x05\x94\xbe\x15\x9b\xb3\xaeB\xd2B?\xe0\xfe\x8f+Fz\xe0,_T\x98>\x03\x88\x95.\xe9\xf8\xc3\xae}\x0cI\xbd\xb0M\xd1\xbe\xabXX\xbb\x03\xd0o\xbe#I\xa2\xae-\x94\x0f\xaf\xff\xdaZ=\xa8\x06\x98\xad\x14@\xaf>\xf1\x94\x14?\x05\xc1\x8c=\x9fyE\xbfA\xff\xc7.\xcc\x84H\xbf\x9fs\xfe.q\xec\x01\xaf\xf8I\'?\x11_\xa9\xae\x0cH\xd6\xbe@FV?h\xf9\xc5\xae\x85\x19\x0f\xaf>\x8e\x93\xbe\x82{.\xbe\x9f\xe2\x94\xbe\x07\x14\x7f.\x8c\xc2\x9d\xbeO\x1cC/a\xb6\x1f\xad\x04\xf5\x97=|\xad\x94.\x8f4\x93\xae\xa4s\x0c?\xb0\xa8(\xbe\x8c\xd9D<\x95\xa0\x1b\xbf\x1b\xe0\xbb\xae\xf6\xc7R\xaf\xea\x0bd=N\x88\x16\xaf+\xff\xff\xbe^\x93^\xbf\xb2&\xb3=\xc3\x8b\xc4>\x9a\xf7\xa9.\x1ev\x00=U5\x88\xae\xd3"c*\x12I,>?\xdao\xae\xcd\x02G\xbe\xdb\x10\x08?\x12\x1b\xcc\xae>{\xea\xae2\xd7\x10\xbfg\xb0t\xbbn\x8b\xdb\xbd\xcd\xe9\xd3\xae\xbfZ\x07\xbft?Y\xae\xc9*\x1a\xadR\x80\x15>\xcd\xa4\xcb.u \x06\xaf\x17\xf0\xbb\xbe\xfd\x95\xe8\xbe\xd6\xe5D?\xa0\xbd\x96>\x9a\x15:.\x11b\xe0.\xc0\xa52\xbf\x17a\xbe\xaeX\xfb\xe4\xbd u\xbc>H%z\xbd\x8fO\xc7>x\x8a\xec.2\nv>e\x89\xdb.\xaa\xe2\xfc\xae\x87\x83\x9d>,\xd6\x97\xae$q\x0f?\xba\x82\xdf\xbdK\xbd\x81.\x8e\n\x9d.$\t\x0b?\xfd\xfa\x0e\xbfz\xba(>\xbd\x01\xa7\xae\xffl*\xbb\xc5y\',\'_\x0b/$\xa4G>\xb0\xf0\xb4.Nw\xc9\xaeE`L\xbd\x93\x8c+\xbf\xa9g|?w\xc6\x04\xbe\xbe$\xad\xaeN\x8a!\xaf\x81\xb6G\xbfX\xc9G\xadQel>\xe7\xce\x96>e\xf0Q\xbc\x03\xd5\xf9\xbe`\xc0\xf0.\x05\xfb\xf0\xbe\xc7`\xf9.\xa3\xe6\x96\xab4\x90\xcf\xbe\xf5\x81\x97\xae\xfe\xe2\xa6\xbd\x7f\x16\xa8>.\xba\x00\xaf\x04\xe1\xdd\xad?\x02\x1f\xbeC\xbd\xfc\xbe\xd4\x03\x05>\x13\x98\x97\xae=\xff\x15\xbd\xed\x159/\xc9\xda\xe7.\xca\xcan\xbcMy\xa0.\x9a\x12\x8d.\xb7\xa7\xc6>\xd2U4\xbe\x86\xae\x05?3\xc3\x93\xbe\xd2Y\xbd\xae&\x8c*\xaf\xb0H\x97\xbe\x0f\x19%\xaf\xa9\xca\x90\xbe\xa3\xf2\x06\xbf\xd6g\x9b\xbc!)U>,v\xab.\x81\xf8\xa4=\xcd\xc1\xb0\xae]\x8b\xf8*\x89d\xc9\xbe\x10\xc0\x91.|`\\\xbe(\xfe\x86><\n\xf6\xae\xef\xfb\x02\xafL\xfc\xad\xbe1U\x9d\xbe!\xe6B>\xa7\x1f\xb3\xaeX\x0cq\xba;\xfe\x87\xae\x9c7\xcf-[\x7f\x08=~\xb1\x03/\xdc:\xc4.T\xfa\x9a\xbe\xfdJ\x89\xbd+m%\xbe\xbf\x1e\xa9>\x1b\xa9W.e\xd1\x9f.\xf2\xeej>qz\x90.\x0c\xaa\xc6<\xc3\xe8\x18>\xfb\xe38\xbf,\xd0@>\xd0\x01\xbd.W\xff6>\x07\xca\x03/&\xee3.+\x00\x06\xbf\x07\xe6\xac\xae\xb5:\xe1\xbd\x1fM\x83=\x07\x82\xf9\xae$\xf3\xa2.\xd9\xa5\xfb>\xf6\x13\x16?\x17.i\xbfU2\xac\xae\xc7\\\xce=\xea\xfe\x10/\x0e\x85\xd2.`\xf3\x0b>e\x0b\xc6.:sz.y\xb7\xfa\xbb\x18\x80I>\x062\x8d\xbe\xe7,\xda\xbd\x1b\xc9\xa2\xae\xa4\xec\x0b\xaf\x9d\xef\x14>$\x02%.x\xd2)>u\x07\x92=\xb4\xb5`\xbf8\xf1@\xbe2\x1e\x93.\xcf\xbd~\xbe!\xc4\xf8.\xa7\x07.-\xbboJ\xbe\xa6\xd4\xcf\xae\xfe=v>\x8e\x940\xbe\x0c\xb7\xda\xaeC\xc0\xde\xad?4\x0b\xbe>%\x11?\x90\xdaJ\xbf\xad{\xba\xae\xd6\x03\xf6\xbdfx\x0e/a~\xbe.\xd5:\x94\xbd\x06\xb5\xbb.\x8f"\xb5.\x0b\x7f\xbe>(\x86\xc0\xbd\xdc\x17\x9b\xb8\x01\r\xa8\xbe\xc6\x08\xb0\xae(GB\xaf\xef\x17\x90\xbdb\x02\x8f\xaeV,@\xbe\x9aY7\xbeX\x94\x16\xbf\x89\xf1\xfe\xbb\xb3\xc7\x89.\xb74p=\xd7\x92\xe4.\xa3\x15F.\xcb\xee\xfd=\xccu\x10. \x99\x14>8\xaab\xbeo\x95\xd6\xaeD\xc8\xfb\xaeZ]\xb7\xbeK\xf0\x11?\xfa\x12\x08\xbf|\xb4\xc7\xae\r\x04\x10\xbb.\x1ch.\x8a\xaax\xad)\xa3\xf9\xbc\xbfO&\xae\xec\xedE.\x80\x89\xc6\xbe\x93\xbc\xa7\xbd\x1d\xd1\xae\xbd\x85w\xd0>/oL.q`\x9a.\x98R\t?k\xbd\x90.\xae\xd3\xa6\xbdk\xa1\x8e>\xe5\xadM\xbf\x02\xa6\xbf>s\x0e\xd1.f\x8a\x85>W`\x00/\xd1T\xef\xae$u\xc3\xbe\x8b\xfe\x91\xae\x17\xb4\x10>\x91\xf9\xbb>\xea\r\xe8\xae~\xa2\xad.3,\x13?R\x85.>\xf0\x9b\x14\xbf\xcbr\xd2\xae8\xc6\x01?\x04\xfd\xea.\xa7L\x10/\xefH\x84>;\xa8\x9c.\xbe\x9f\r\xae\xd0\x94]\xbd\xd2\xbc\xd4<\np\x08\xbe\xa9\xf8\xa0\xbd\xca\xc7\x8b\xac\xb1\x1b"\xafn\x15\x1c?q\xd6\n.N\xa1f>3\x94\x9b>0\x1f~\xbf\xeb\t\xf1\xbe\x05)\xb7.\x100\xf4\xbeJf\xe5.\x06\x1b\xc2\xad\x85M\x8e\xbd=]\xa7\xae\xd1\xe0,?\xf2@\xb0>\xdd-\xca\xae\xdbC\xd4\xad\xcc%\x15\xbe\xb4Y@>#z\x19\xbf:\x83\xb2-\te\x82\xbe{\t\x1b/\xa1\x0e\xe2-\xb2\x10\xa4<\xf7\x9f\xa3.\xed%t.\xdby\xd9>\xdf\xf0I\xbd~\xdd\xbe\xbdm(\xab\xbe,\xb1n.\x03\xcc+\xaf\xb6\xb8x>\x87\x96\x11\xae\\I\x8a\xbe\x94\xf8\xd6\xbe\x18M+\xbfj\x01/>\x86\xd2\x8d.\x82Ao=@Q\xbb.\xcc\x95\x17-\x0f\x82\xd8=\xc0\'$\xae\xee\xc5\xa8>\x91\n\xa6=xq\xbb\xaeC\x15\xe3\xae\xd4\xba\xcb\xbe\xd6\xa5g>\x17\x18\xa9\xbe\x985\xfb\xae\xb6\xcc\x9b\xbe\xdf\xd2\x94\xae`\xad\xb9,\xc3_\xca=\n\x91\xc7\xad\x08\r\x99\xae\xe9\xccn\xbe\xa3f&\xbd6\x81\xd5>\xc7\xbe)<)Sd.\xf4X\xa9\xad\xd1$\x81\xbe!\xcd{.\xe5eg\xbcc\xaf\x18=\x04\x19)\xbfe6d=\xcd\x14\xe9.T\xae\xf7=\x82m\xfc.KG\xeb\xae{8\xd7\xbe\xa6\xa2q\xaeT\x88}\xbe\xd6\xb71\xbd\x80j\xe2\xae\xbaQ\xa4.\x87\xd2?>a\xa5\x0f\xbd!Y\xc4\xbdL#\xc9\xae\xbf\xb6\x81\xbeh|\x0c/\xf4\xb8\xaa.\x07u\'>\xb4_\xdc.\x89K\xc2\xae"\r]\xbdE\xa3\xa7\xbd\xf76\x0c?\x01\x92r=\xae\xb69\xae\xd9\x7f\x0e\xaf5\x17\xff\xbe\x01\x18\xc1-m\x84A>\x95&S=~lD\xbfa\xc6\x8b\xbe\xfd^\xef.`\xcbA\xbe\xd3p\n/5\x04\x0e\xaf\xe5\x97\xcc\xbc(U\xa0\xae\xc8>m>\x07\xb8\xce\xbe/\x15\xd4\xaeP\xcc\x16\xaev\xcf\x95\xbdR\x84\x87\xbcrC\x1c\xbe\xd8\xa06.\x11\xd56\xbb4\x0f\x1d/\x92\x10\xa1.<\xdc]\xbd\xda\xdb\xd4.:\xa7|.\x1c\xb2\x90>\xcd\x1bC<\x840\x7f>q\xe6\x83<\x93\xfdL.%\x10N\xaf\xf5\xeb#\xbe\xa1\xbe\x1a\xae\xca\x0c\x97\xbd\xcdPf\xbeq\xae\x16\xbf\xa0\xd6\x1d=\xa3\x8e\xa1.\x1b\xfdi>\x82L\xbc\xae?\xbb#\xae\xd6c]>\x8e4\xa1\xac\t\xf9\x88=s"\xbe\xbe\x92s\xd3\xaen%\xf3\xaew\x9fe\xbe+\xb6\xa2=\xf1OI\xbc\x1en\x00\xaf\x13\x05\x85>\x8a%\x83.\xff\x99\xdb\xac\x98S\xcc\xbb', 0, 1, 'ordinal not in range(128)')
You may need to pass the encoding= option to numpy.load
I'm using the latest version of tensornets. Any clue why this is happening?
The text was updated successfully, but these errors were encountered:
The problem is solved by adding the encoding argument (see updates). The pickle files generated on Python 2 seem to be encoded as bytes. Thank you for reporting the issue, @miha-skalic!
Hello,
I was trying to test your code and got stuck on loading models. See full log:
I'm using the latest version of tensornets. Any clue why this is happening?
The text was updated successfully, but these errors were encountered: