Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Model load issue #2

Closed
miha-skalic opened this issue Nov 15, 2017 · 1 comment
Closed

Model load issue #2

miha-skalic opened this issue Nov 15, 2017 · 1 comment

Comments

@miha-skalic
Copy link

Hello,

I was trying to test your code and got stuck on loading models. See full log:

Python 3.5.2 |Continuum Analytics, Inc.| (default, Jul  2 2016, 17:53:06) 
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> import tensornets as nets
>>> import numpy as np
>>> 
>>> print(tf.__version__)
1.3.0
>>> print(np.__version__)
1.13.3
>>> 
>>> inputs = tf.placeholder(tf.float32, [None, 224, 224, 3])
>>> outputs = tf.placeholder(tf.float32, [None, 50])
>>> model = nets.Inception4(inputs, is_training=True, classes=50)
>>> 
>>> loss = tf.losses.softmax_cross_entropy(outputs, model)
>>> train = tf.train.AdamOptimizer(learning_rate=1e-5).minimize(loss)
>>> 
>>> with tf.Session() as sess:
...     nets.pretrained(model)
... 
2017-11-15 21:14:22.616901: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-11-15 21:14:22.616976: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-11-15 21:14:22.617005: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-11-15 21:14:22.767544: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-11-15 21:14:22.767871: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 0 with properties: 
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.582
pciBusID 0000:01:00.0
Total memory: 10.91GiB
Free memory: 355.38MiB
2017-11-15 21:14:22.900139: W tensorflow/stream_executor/cuda/cuda_driver.cc:523] A non-primary context 0xbea1700 exists before initializing the StreamExecutor. We haven't verified StreamExecutor works with that.
2017-11-15 21:14:22.900342: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-11-15 21:14:22.900694: I tensorflow/core/common_runtime/gpu/gpu_device.cc:955] Found device 1 with properties: 
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.582
pciBusID 0000:02:00.0
Total memory: 10.91GiB
Free memory: 400.44MiB
2017-11-15 21:14:22.900850: I tensorflow/core/common_runtime/gpu/gpu_device.cc:976] DMA: 0 1 
2017-11-15 21:14:22.900869: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 0:   Y Y 
2017-11-15 21:14:22.900881: I tensorflow/core/common_runtime/gpu/gpu_device.cc:986] 1:   Y Y 
2017-11-15 21:14:22.900899: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0)
2017-11-15 21:14:22.900914: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0)
Traceback (most recent call last):
  File "/shared/miha/programs/miniconda3/lib/python3.5/site-packages/numpy/lib/format.py", line 640, in read_array
    array = pickle.load(fp, **pickle_kwargs)
UnicodeDecodeError: 'ascii' codec can't decode byte 0xb1 in position 0: ordinal not in range(128)

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 2, in <module>
  File "/shared/miha/py_homebrew/tensornets/pretrained.py", line 49, in pretrained
    __load_dict__[model_name](scope)
  File "/shared/miha/py_homebrew/tensornets/pretrained.py", line 101, in load_inception4
    return load_weights(scopes, weights_path)
  File "/shared/miha/py_homebrew/tensornets/utils.py", line 166, in load_weights
    values = data['values']
  File "/shared/miha/programs/miniconda3/lib/python3.5/site-packages/numpy/lib/npyio.py", line 233, in __getitem__
    pickle_kwargs=self.pickle_kwargs)
  File "/shared/miha/programs/miniconda3/lib/python3.5/site-packages/numpy/lib/format.py", line 646, in read_array
    "to numpy.load" % (err,))
UnicodeError: Unpickling a python object failed: UnicodeDecodeError('ascii', b'\xb1\xe0\xd7\xad\xdbf\x93\xae\xdcS\x90\xbe\x1d\x8f!?\x81\xdd^\xbf\x9a`\x9f=di\xae\xae \x07\x95.\xec\xcc\xc4\xbd\xa93\xaa\xae\x9d\xac\xef\xbd\xf1H<<\xa4,K?mz\xd8=RP\xcb.\xae\xad\xe1=ML\xa5.\x1e\x91\xff\xaeL\x11\xd4\xbe\xe2\xaa\xa0\xae\xd2\xeb\xa7\xbe\x84;\xb2>(\x1c\x02\xaf\x11\n\x00\xael\\\x88>\xea-Z\xbd@\'\x0f\xbdQ\x02\xb5\xae\x81n\xa5\xbe\xa5\xddU\xab"\xf8\x00/Z1\x92=v\xab\xb3.\x85\x06\xb2\xae|i\xf1\xbc\x93\xb5I?\x9c\x8b\x86\xbf\x873>=\xb9\xb9\x94\xaeQ!\x10\xaf\x00t>\xbe\xba\x80\x1c.\xa6F\x8e>\xa5\xb6\x01>\x15.S?\x01\xad]\xbe\x93\xe5\xe6.\xe3\xa2\xa2\xbe\xc2\xc7\x9c.,\xec\x10\xaf\xa5\x07\xd4=\x1e\x07\xba\xae\x8bW\x92>\x0e3h\xbe\xf3w\n\xaf\xd2s\'\xaf\x1e\xbf\x92\xbd\xa8\x82\xb8\xbd#\x12\xc6\xbc\xb9\xa2\xa1\xae\xad"t=\xae\x82G/\xb1L\xb3.\x19\xa8|\xbd<\x8f\xbb.\xaaE\x89\xae\xaco\x9c>i\x1b\x9c>\xde\x8c\x17\xbf\xa1k\x7f\xbd\xea\x13\xaa\xaet\x95^\xaf\xd0\x04\x04\xbex\xc2\x12\xafr\x08b\xbey\xe6\xb7\xbd\x1b\'\x17?\xe8\x823=p\x9e\x91.\x1byW>"\xf4\xe7\xae\xd8b\x8a\xad?]&>H\xf7\x94.\x7f\x0f\xa7>C+V\xbeP\x1f\xf2\xae+\xa1\xe3\xae\x0cC;\xbe\xa6\xe2\x95=\xac7C=\x05K\xb7\xae(\xcf\x90>\xf0(x\xae\xd0\xe3\xec\xad\xb7\xde\xe8\xbd|\x9cH\xae\xa2\x97\xae\xae\xb0e\xc9\xbe)\xb0\x9b\xbe\\\x16+>PG\xaa>\xe7\x87\xf4\xaej\x10\x98.(\\\x80>\'\x98\xab\xaeO\xcfl\xbe\x91\xf9\x87>\x03\xb68?\xe3q\xc6>\xf8P\xeb.\x92\xaa\x85>\x91\x82\x90\xaeNY\xd0\xac\x01\x8d\xcd>\xc0\x0c\xc5.\x0c<\xfb=\xaa\xa2\xe1\xbe\xb7B\x9f\xae\x95`\x8b\xae\xf5r\x13?\xc6*\n\xbf\x84\xb8M>\x8cg\x97\xae\xb6^\r\xbd\xbe\xaf\x1d\xad\xeen\xfd+\xdaT:>\xed\x17\xbc.\x1c>\xd1\xae$\x87\x9c;\'\xf6\xd6\xbe\xc5x\x05>W\x95\x14\xbe\x1a\x86\xa5\xae\x87"\x0f\xaf7Z\xfc>\xc7@\n.\x02\xcdr>\xb5\xf7o>\x1c\x13i?\xec8\x05\xbf\nM\xcc\xad\xebV\x05\xbf\x19\xfd\x0b\xae\x98\xd3\xbf\xab\x03\x04\x85=\xd9\x98\xa6\xae\x88\x8b\xe1\xbeB\x8a\xa4\xbe\xdb\xd0\xef\xae]\xa8A\xaf\x80\xad\x1e\xbeX;\x02\xbf\x0e$\x8f>^\x1a\xfd\xad\xdd\x7fm;7\x19F/\x1d\x19\xf7.v\xcd\xa2<\xbed\xe4.\xb0;\xcb\xae;}\xe1>L,P\xbeL{\xa7=\xf4\x83\xab\xbei\xe0\xc9\xae\xb4\xb5V\xaf\xde]\x89>^\x16\x15\xaf \xac\xcf\xbed\xa7\xff\xbe\x08N)?\xfd^\xfd=n\xc3\xa7.\x06\xf7\x07>\x9c\xccs\xaeU=\xc0+\xb8\x027\xbexv\xa3.\xd63J\xbe\xf0\x96\xbe;*\xc5\xe8\xae\x02X\xed\xae|E\xb4\xbek\xfa\x89\xbe\x8c\\\x98>\xc5\x97\xac\xae\x7f\\\'<\xc9Dp\xae\x0e\xa0\xbf\xad\x8f\x99\x9a\xbcF(\x12.?\x0c\x07\xaf\x0b\x17\xa2\xbeR4-\xbeJ\x99\x1d?\xb6\xa2D>\xc3K\xee\xae\xcf\x0f\xca.z%+>kz\x91\xaeX\x01\xb9\xbd\n\xd3\x80>#\xd6\xf0>\xcd8\x82>\x94k\x14/\x90\xd7\x12>\xd6\x01v\xaeQU\x04\xaf\x9e\xaa\x04?\x91\xf6\x98\xae\x1f#\r?\\\x98\x1b\xbf\x95\x8c\xa3\xad\x10`\xa6.\xed\x9e\xda>fr\x81\xbf\xa1\xeb\x1b?\x99(\x88\xae\x884\x0f\xbe(\xbc]\xadP\xe7\xf2.~\x12\xce=\xa4\xde\xb6.\x1b\x0e\xdd\xae*\xaf\x83\xbaX\xe6\xb5\xbe\x8cjH?\xcfs\x0e\xbe\x0c\x1a\xbd\xae2a\x90\xad\x8a\xbb\xc0>\xc9\x82-.\xebj:>\x85\xda\x94=\xeca&?\xd4\xa2\x81\xbe\xc4\xaa\xfa\xac\xf0o\xa8\xbe\x8e\x85\x0e\xaeL{\x87\xacR\xeb\xca\xbeA\n\x9f\xaeY[\xe2\xbe\xbek\\\xbe\x0e\xb7\xc2\xaeS\x13\t\xaf\xc0\xbc\xd5\xbd\x9a\xdeh\xbf$\x1e+?e\x00e\xaeQ\x1d=<\xb6\xf9)/c*\xb1.\xe7Io\xbd~\x94\xc2.!\xe3[.(\x98\x91>\'\x93\xe7\xbc\xd5\xa1\xad>\x82H$\xbe1k\xbc\xae%+\xfd\xad\xbe\x14\x8b>\xc0\x1a\x18\xaf\xee;<\xbe\xf4X\x82\xbe\x1e\\\xce>\x955 \xbcH\x17\xb3.\x9c\x0f\x8b==*j\xae\x02`x\xab\xbc\xdd\xe9\xbeuS\x92\xae\xe5J\xda\xbeP\x1f\xd6=\xb2\xb0\xdf\xae\xa6 \xf8\xae\x11\x85l\xbe\x9e\x8d%\xbf\xda\xdc\x1b?^\xe4\x94\xaeg\xc7\x04>\xe2w\x8e\xae_Y\r/\xe8\xe1\xc0\xbd?\xa8\xbf.\xde\x05\x88\xaek`\xc6\xbe\xaekB?\x93\xcb\\\xbf\xbc|\xce>T\xf2$.\xcc\x12y-\x96\xa4\xce\xbdn"\xb5\xae\x01\x15\x00\xbe\xb7\xf1Z>\xeeW=>\x01\xae\xa5>L\xa2\xc5.gW\x8e>\xa8\xc3\x05/\xc3\x0c\x8d-b0<\xbe\xce\xab\xb8\xae\xa2\xff\x0b\xbfR^\x02=\xaa\xe4\xe8\xaep\xaa\xfe.Y\xa8\x13?Y\xa7I>\x00t\x00\xbf?\xcd\xac\xae\xe0\xff\xad>\xe7\xf4\xee.\xbcZ\xec.+\xee\x10>\xe2\xe2\x9e.\xfd\xfa\x8f\xaew|\x0c\xbdy\xb3e?\xad\xb5\x82\xbf\xb4\xd7\xce\xbd\xa91\xaf\xae\x94t\xea\xae4\xc6:\xbem\xc3\x99-J*\x8f>\xf1\xaft>\x96f\x12>ZE\x02\xbf\xf5\xad\xb6.\x9a1\xe5\xbe\xe7\x1c\xe5.\x89\x11\xfd\xadt\xc2\x82>\x94\xcd\xb4\xae\xfbCq\xbdDd\x17\xbe\t\xaa\xdf\xaea\x9f\x04\xafx\xedH\xbe-\x9e;>D~\xd9\xbe\xea(\xaf\xae\xc7bK\xbed6\x16/N\xd8\xaa.S\x98"\xbdd\xc9\xa8.\xba8\xf0.I\x9b\xdd>S\xe2\xb7>\x90\xf4\xfe\xbe\x15\xc1\xd4\xbe\x87\x98\xbd\xae\'\x11@\xafv\xd3:\xbe\xbc \x10\xaf \xd6\xbd\xbe/>\xee\xbe\xd5\xa3\t>\x05\xcd.>6\x95\x8d.Pd\xd2=\x01\x0e\x9e.\x93\r\xf4-\xb3\x02a>\xdc\x0c\xad\xae:\xd5\x01>\xae]\x12\xbeV}\xf8\xae}\x99\xe9\xae\x1c\xb4\xca\xbeY\xb7\x80>\x02\x8bp\xbe%\x15\xb4\xae\xc7yO\xbe\xac\xfe\x83\xad\xc9\xdbl\xad_\xe4\xb7\xbc\xcd\xab\x8b.\x1d\x99\xd3\xae|\x0e\x07\xbf(\xe2\x8b\xbe=\xb1\xe1<\x9bi"?q\xb2l.\xf8\xa8\x1a\xad\xbfo\x8f\xbdx=\xb0\xae\xee^2\xbeR\xe4\x06?\x0b`)=\xb4\xc62?\xe9\xc8\xcd.\x01\xf7\xbe>\x84-\xed.Z\x01\xe2\xae\x10\x96E?\xb5Q\x99\xaeXl\xfd\xbd\xba\x1b\xa8>\xdex\x9a\xae1\x86\xad.\'fR?\xff!H\xbe\x86\x05\x94\xbe\x15\x9b\xb3\xaeB\xd2B?\xe0\xfe\x8f+Fz\xe0,_T\x98>\x03\x88\x95.\xe9\xf8\xc3\xae}\x0cI\xbd\xb0M\xd1\xbe\xabXX\xbb\x03\xd0o\xbe#I\xa2\xae-\x94\x0f\xaf\xff\xdaZ=\xa8\x06\x98\xad\x14@\xaf>\xf1\x94\x14?\x05\xc1\x8c=\x9fyE\xbfA\xff\xc7.\xcc\x84H\xbf\x9fs\xfe.q\xec\x01\xaf\xf8I\'?\x11_\xa9\xae\x0cH\xd6\xbe@FV?h\xf9\xc5\xae\x85\x19\x0f\xaf>\x8e\x93\xbe\x82{.\xbe\x9f\xe2\x94\xbe\x07\x14\x7f.\x8c\xc2\x9d\xbeO\x1cC/a\xb6\x1f\xad\x04\xf5\x97=|\xad\x94.\x8f4\x93\xae\xa4s\x0c?\xb0\xa8(\xbe\x8c\xd9D<\x95\xa0\x1b\xbf\x1b\xe0\xbb\xae\xf6\xc7R\xaf\xea\x0bd=N\x88\x16\xaf+\xff\xff\xbe^\x93^\xbf\xb2&\xb3=\xc3\x8b\xc4>\x9a\xf7\xa9.\x1ev\x00=U5\x88\xae\xd3"c*\x12I,>?\xdao\xae\xcd\x02G\xbe\xdb\x10\x08?\x12\x1b\xcc\xae>{\xea\xae2\xd7\x10\xbfg\xb0t\xbbn\x8b\xdb\xbd\xcd\xe9\xd3\xae\xbfZ\x07\xbft?Y\xae\xc9*\x1a\xadR\x80\x15>\xcd\xa4\xcb.u \x06\xaf\x17\xf0\xbb\xbe\xfd\x95\xe8\xbe\xd6\xe5D?\xa0\xbd\x96>\x9a\x15:.\x11b\xe0.\xc0\xa52\xbf\x17a\xbe\xaeX\xfb\xe4\xbd u\xbc>H%z\xbd\x8fO\xc7>x\x8a\xec.2\nv>e\x89\xdb.\xaa\xe2\xfc\xae\x87\x83\x9d>,\xd6\x97\xae$q\x0f?\xba\x82\xdf\xbdK\xbd\x81.\x8e\n\x9d.$\t\x0b?\xfd\xfa\x0e\xbfz\xba(>\xbd\x01\xa7\xae\xffl*\xbb\xc5y\',\'_\x0b/$\xa4G>\xb0\xf0\xb4.Nw\xc9\xaeE`L\xbd\x93\x8c+\xbf\xa9g|?w\xc6\x04\xbe\xbe$\xad\xaeN\x8a!\xaf\x81\xb6G\xbfX\xc9G\xadQel>\xe7\xce\x96>e\xf0Q\xbc\x03\xd5\xf9\xbe`\xc0\xf0.\x05\xfb\xf0\xbe\xc7`\xf9.\xa3\xe6\x96\xab4\x90\xcf\xbe\xf5\x81\x97\xae\xfe\xe2\xa6\xbd\x7f\x16\xa8>.\xba\x00\xaf\x04\xe1\xdd\xad?\x02\x1f\xbeC\xbd\xfc\xbe\xd4\x03\x05>\x13\x98\x97\xae=\xff\x15\xbd\xed\x159/\xc9\xda\xe7.\xca\xcan\xbcMy\xa0.\x9a\x12\x8d.\xb7\xa7\xc6>\xd2U4\xbe\x86\xae\x05?3\xc3\x93\xbe\xd2Y\xbd\xae&\x8c*\xaf\xb0H\x97\xbe\x0f\x19%\xaf\xa9\xca\x90\xbe\xa3\xf2\x06\xbf\xd6g\x9b\xbc!)U>,v\xab.\x81\xf8\xa4=\xcd\xc1\xb0\xae]\x8b\xf8*\x89d\xc9\xbe\x10\xc0\x91.|`\\\xbe(\xfe\x86><\n\xf6\xae\xef\xfb\x02\xafL\xfc\xad\xbe1U\x9d\xbe!\xe6B>\xa7\x1f\xb3\xaeX\x0cq\xba;\xfe\x87\xae\x9c7\xcf-[\x7f\x08=~\xb1\x03/\xdc:\xc4.T\xfa\x9a\xbe\xfdJ\x89\xbd+m%\xbe\xbf\x1e\xa9>\x1b\xa9W.e\xd1\x9f.\xf2\xeej>qz\x90.\x0c\xaa\xc6<\xc3\xe8\x18>\xfb\xe38\xbf,\xd0@>\xd0\x01\xbd.W\xff6>\x07\xca\x03/&\xee3.+\x00\x06\xbf\x07\xe6\xac\xae\xb5:\xe1\xbd\x1fM\x83=\x07\x82\xf9\xae$\xf3\xa2.\xd9\xa5\xfb>\xf6\x13\x16?\x17.i\xbfU2\xac\xae\xc7\\\xce=\xea\xfe\x10/\x0e\x85\xd2.`\xf3\x0b>e\x0b\xc6.:sz.y\xb7\xfa\xbb\x18\x80I>\x062\x8d\xbe\xe7,\xda\xbd\x1b\xc9\xa2\xae\xa4\xec\x0b\xaf\x9d\xef\x14>$\x02%.x\xd2)>u\x07\x92=\xb4\xb5`\xbf8\xf1@\xbe2\x1e\x93.\xcf\xbd~\xbe!\xc4\xf8.\xa7\x07.-\xbboJ\xbe\xa6\xd4\xcf\xae\xfe=v>\x8e\x940\xbe\x0c\xb7\xda\xaeC\xc0\xde\xad?4\x0b\xbe>%\x11?\x90\xdaJ\xbf\xad{\xba\xae\xd6\x03\xf6\xbdfx\x0e/a~\xbe.\xd5:\x94\xbd\x06\xb5\xbb.\x8f"\xb5.\x0b\x7f\xbe>(\x86\xc0\xbd\xdc\x17\x9b\xb8\x01\r\xa8\xbe\xc6\x08\xb0\xae(GB\xaf\xef\x17\x90\xbdb\x02\x8f\xaeV,@\xbe\x9aY7\xbeX\x94\x16\xbf\x89\xf1\xfe\xbb\xb3\xc7\x89.\xb74p=\xd7\x92\xe4.\xa3\x15F.\xcb\xee\xfd=\xccu\x10. \x99\x14>8\xaab\xbeo\x95\xd6\xaeD\xc8\xfb\xaeZ]\xb7\xbeK\xf0\x11?\xfa\x12\x08\xbf|\xb4\xc7\xae\r\x04\x10\xbb.\x1ch.\x8a\xaax\xad)\xa3\xf9\xbc\xbfO&\xae\xec\xedE.\x80\x89\xc6\xbe\x93\xbc\xa7\xbd\x1d\xd1\xae\xbd\x85w\xd0>/oL.q`\x9a.\x98R\t?k\xbd\x90.\xae\xd3\xa6\xbdk\xa1\x8e>\xe5\xadM\xbf\x02\xa6\xbf>s\x0e\xd1.f\x8a\x85>W`\x00/\xd1T\xef\xae$u\xc3\xbe\x8b\xfe\x91\xae\x17\xb4\x10>\x91\xf9\xbb>\xea\r\xe8\xae~\xa2\xad.3,\x13?R\x85.>\xf0\x9b\x14\xbf\xcbr\xd2\xae8\xc6\x01?\x04\xfd\xea.\xa7L\x10/\xefH\x84>;\xa8\x9c.\xbe\x9f\r\xae\xd0\x94]\xbd\xd2\xbc\xd4<\np\x08\xbe\xa9\xf8\xa0\xbd\xca\xc7\x8b\xac\xb1\x1b"\xafn\x15\x1c?q\xd6\n.N\xa1f>3\x94\x9b>0\x1f~\xbf\xeb\t\xf1\xbe\x05)\xb7.\x100\xf4\xbeJf\xe5.\x06\x1b\xc2\xad\x85M\x8e\xbd=]\xa7\xae\xd1\xe0,?\xf2@\xb0>\xdd-\xca\xae\xdbC\xd4\xad\xcc%\x15\xbe\xb4Y@>#z\x19\xbf:\x83\xb2-\te\x82\xbe{\t\x1b/\xa1\x0e\xe2-\xb2\x10\xa4<\xf7\x9f\xa3.\xed%t.\xdby\xd9>\xdf\xf0I\xbd~\xdd\xbe\xbdm(\xab\xbe,\xb1n.\x03\xcc+\xaf\xb6\xb8x>\x87\x96\x11\xae\\I\x8a\xbe\x94\xf8\xd6\xbe\x18M+\xbfj\x01/>\x86\xd2\x8d.\x82Ao=@Q\xbb.\xcc\x95\x17-\x0f\x82\xd8=\xc0\'$\xae\xee\xc5\xa8>\x91\n\xa6=xq\xbb\xaeC\x15\xe3\xae\xd4\xba\xcb\xbe\xd6\xa5g>\x17\x18\xa9\xbe\x985\xfb\xae\xb6\xcc\x9b\xbe\xdf\xd2\x94\xae`\xad\xb9,\xc3_\xca=\n\x91\xc7\xad\x08\r\x99\xae\xe9\xccn\xbe\xa3f&\xbd6\x81\xd5>\xc7\xbe)<)Sd.\xf4X\xa9\xad\xd1$\x81\xbe!\xcd{.\xe5eg\xbcc\xaf\x18=\x04\x19)\xbfe6d=\xcd\x14\xe9.T\xae\xf7=\x82m\xfc.KG\xeb\xae{8\xd7\xbe\xa6\xa2q\xaeT\x88}\xbe\xd6\xb71\xbd\x80j\xe2\xae\xbaQ\xa4.\x87\xd2?>a\xa5\x0f\xbd!Y\xc4\xbdL#\xc9\xae\xbf\xb6\x81\xbeh|\x0c/\xf4\xb8\xaa.\x07u\'>\xb4_\xdc.\x89K\xc2\xae"\r]\xbdE\xa3\xa7\xbd\xf76\x0c?\x01\x92r=\xae\xb69\xae\xd9\x7f\x0e\xaf5\x17\xff\xbe\x01\x18\xc1-m\x84A>\x95&S=~lD\xbfa\xc6\x8b\xbe\xfd^\xef.`\xcbA\xbe\xd3p\n/5\x04\x0e\xaf\xe5\x97\xcc\xbc(U\xa0\xae\xc8>m>\x07\xb8\xce\xbe/\x15\xd4\xaeP\xcc\x16\xaev\xcf\x95\xbdR\x84\x87\xbcrC\x1c\xbe\xd8\xa06.\x11\xd56\xbb4\x0f\x1d/\x92\x10\xa1.<\xdc]\xbd\xda\xdb\xd4.:\xa7|.\x1c\xb2\x90>\xcd\x1bC<\x840\x7f>q\xe6\x83<\x93\xfdL.%\x10N\xaf\xf5\xeb#\xbe\xa1\xbe\x1a\xae\xca\x0c\x97\xbd\xcdPf\xbeq\xae\x16\xbf\xa0\xd6\x1d=\xa3\x8e\xa1.\x1b\xfdi>\x82L\xbc\xae?\xbb#\xae\xd6c]>\x8e4\xa1\xac\t\xf9\x88=s"\xbe\xbe\x92s\xd3\xaen%\xf3\xaew\x9fe\xbe+\xb6\xa2=\xf1OI\xbc\x1en\x00\xaf\x13\x05\x85>\x8a%\x83.\xff\x99\xdb\xac\x98S\xcc\xbb', 0, 1, 'ordinal not in range(128)')
You may need to pass the encoding= option to numpy.load

I'm using the latest version of tensornets. Any clue why this is happening?

@taehoonlee
Copy link
Owner

The problem is solved by adding the encoding argument (see updates). The pickle files generated on Python 2 seem to be encoded as bytes. Thank you for reporting the issue, @miha-skalic!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants