You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I followed the instruction, but i stuck with this error. Any one help me? I used 5 steps per epoch just for checking if it is working without error. But I found ValueError after one epoch.
CUDA v9.0.176
tensorflow-gpu 1.11.0
Keras2.2.4
** starting learning_rate is 0.001**
** training start with parameters: **
verbose: 1
max_queue_size: 32
workers: 32
epochs: 30
use_multiprocessing: True
shuffle: False
steps_per_epoch: 5
generator: <app.datasets.dataset_utility.DataSequence object at 0x7f0c24034550>
validation_data: <app.datasets.dataset_utility.DataSequence object at 0x7f0c24034898>
callbacks: [<keras.callbacks.ModelCheckpoint object at 0x7f0c24027f28>, <keras.callbacks.TensorBoard object at 0x7f06541db390>, <keras.callbacks.ReduceLROnPlateau object at 0x7f06541db160>, <app.callback.MultipleClassAUROC object at 0x7f0654271cc0>, <app.callback.SaveBaseModel object at 0x7f06541db0f0>, <app.callback.ShuffleGenerator object at 0x7f0654ef7780>]
** MultipleClassAUROC callback is ready
** SaveBaseModel callback is ready
Epoch 1/30
5/5 [==============================] - 42s 8s/step - loss: nan - val_loss: nan
current learning rate: 0.0010000000474974513
*** epoch#1 dev auroc ***
103/103 [==============================] - 40s 390ms/step
*** dev auroc ***
y = (3272, 14)
y_hat = (3272, 14)
Traceback (most recent call last):
File "./kmi_train", line 22, in <module>
main(config_file=args.config)
File "./kmi_train", line 9, in main
tr.train()
File "/home/grace/Keras_MedicalImgAI/app/main/Trainer.py", line 164, in train
self.history = self.model_train.fit_generator(**self.fitter_kwargs)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/keras/engine/training.py", line 1418, in fit_generator
initial_epoch=initial_epoch)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/keras/engine/training_generator.py", line 251, in fit_generator
callbacks.on_epoch_end(epoch, epoch_logs)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/keras/callbacks.py", line 79, in on_epoch_end
callback.on_epoch_end(epoch, logs)
File "/home/grace/Keras_MedicalImgAI/app/callback.py", line 132, in on_epoch_end
_, mean_auroc, _, _ = metrics.compute_auroc(self.model, self.generator, self.class_mode, self.class_names)
File "/home/grace/Keras_MedicalImgAI/app/utilities/metrics.py", line 21, in compute_auroc
current_auroc = roc_auc_score(y, y_hat, average=None)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/sklearn/metrics/ranking.py", line 277, in roc_auc_score
sample_weight=sample_weight)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/sklearn/metrics/base.py", line 79, in _average_binary_score
y_score = check_array(y_score)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/sklearn/utils/validation.py", line 453, in check_array
_assert_all_finite(array)
File "/home/grace/Keras_MedicalImgAI/test/lib/python3.6/site-packages/sklearn/utils/validation.py", line 44, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
The text was updated successfully, but these errors were encountered:
GraceBoston
changed the title
Hello, I followed the instruction, but i stuck with this error. Any one help me?
ValueError: Input contains NaN, infinity or a value too large for dtype('float32')
Nov 9, 2018
Hello,
I followed the instruction, but i stuck with this error. Any one help me? I used 5 steps per epoch just for checking if it is working without error. But I found ValueError after one epoch.
CUDA v9.0.176
tensorflow-gpu 1.11.0
Keras2.2.4
The text was updated successfully, but these errors were encountered: