Skip to content

Commit 005d34b

Browse files
committed
edit greedy decoder code
1 parent 6a2a47a commit 005d34b

File tree

1 file changed

+37
-40
lines changed

1 file changed

+37
-40
lines changed

5-1.Transformer/Transformer(Greedy_decoder)-Torch.py

+37-40
Original file line numberDiff line numberDiff line change
@@ -52,48 +52,50 @@ def get_posi_angle_vec(position):
5252
def get_attn_pad_mask(seq_q, seq_k):
5353
batch_size, len_q = seq_q.size()
5454
batch_size, len_k = seq_k.size()
55-
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k(=len_q)
55+
# eq(zero) is PAD token
56+
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # batch_size x 1 x len_k(=len_q), one is masking
5657
return pad_attn_mask.expand(batch_size, len_q, len_k) # batch_size x len_q x len_k
5758

58-
class ScaledDotProductAttention(nn.Module):
59+
def get_attn_subsequent_mask(seq):
60+
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
61+
subsequent_mask = np.triu(np.ones(attn_shape), k=1)
62+
subsequent_mask = torch.from_numpy(subsequent_mask).byte()
63+
return subsequent_mask
5964

65+
class ScaledDotProductAttention(nn.Module):
6066
def __init__(self):
6167
super(ScaledDotProductAttention, self).__init__()
6268

63-
def forward(self, Q, K, V, attn_mask=None):
69+
def forward(self, Q, K, V, attn_mask):
6470
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
65-
if attn_mask is not None:
66-
scores.masked_fill_(attn_mask, -1e9)
71+
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
6772
attn = nn.Softmax(dim=-1)(scores)
6873
context = torch.matmul(attn, V)
6974
return context, attn
7075

7176
class MultiHeadAttention(nn.Module):
72-
7377
def __init__(self):
7478
super(MultiHeadAttention, self).__init__()
7579
self.W_Q = nn.Linear(d_model, d_k * n_heads)
7680
self.W_K = nn.Linear(d_model, d_k * n_heads)
7781
self.W_V = nn.Linear(d_model, d_v * n_heads)
78-
79-
def forward(self, Q, K, V, attn_mask=None):
82+
def forward(self, Q, K, V, attn_mask):
8083
# q: [batch_size x len_q x d_model], k: [batch_size x len_k x d_model], v: [batch_size x len_k x d_model]
8184
residual, batch_size = Q, Q.size(0)
8285
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
8386
q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # q_s: [batch_size x n_heads x len_q x d_k]
8487
k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # k_s: [batch_size x n_heads x len_k x d_k]
8588
v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # v_s: [batch_size x n_heads x len_k x d_v]
8689

87-
if attn_mask is not None: # attn_mask : [batch_size x len_q x len_k]
88-
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]
90+
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size x n_heads x len_q x len_k]
91+
8992
# context: [batch_size x n_heads x len_q x d_v], attn: [batch_size x n_heads x len_q(=len_k) x len_k(=len_q)]
90-
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask=attn_mask)
93+
context, attn = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
9194
context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size x len_q x n_heads * d_v]
9295
output = nn.Linear(n_heads * d_v, d_model)(context)
9396
return nn.LayerNorm(d_model)(output + residual), attn # output: [batch_size x len_q x d_model]
9497

9598
class PoswiseFeedForwardNet(nn.Module):
96-
9799
def __init__(self):
98100
super(PoswiseFeedForwardNet, self).__init__()
99101
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
@@ -106,33 +108,30 @@ def forward(self, inputs):
106108
return nn.LayerNorm(d_model)(output + residual)
107109

108110
class EncoderLayer(nn.Module):
109-
110111
def __init__(self):
111112
super(EncoderLayer, self).__init__()
112113
self.enc_self_attn = MultiHeadAttention()
113114
self.pos_ffn = PoswiseFeedForwardNet()
114115

115-
def forward(self, enc_inputs):
116-
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs) # enc_inputs to same Q,K,V
116+
def forward(self, enc_inputs, enc_self_attn_mask):
117+
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
117118
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size x len_q x d_model]
118119
return enc_outputs, attn
119120

120121
class DecoderLayer(nn.Module):
121-
122122
def __init__(self):
123123
super(DecoderLayer, self).__init__()
124124
self.dec_self_attn = MultiHeadAttention()
125125
self.dec_enc_attn = MultiHeadAttention()
126126
self.pos_ffn = PoswiseFeedForwardNet()
127127

128-
def forward(self, dec_inputs, enc_outputs, enc_attn_mask, dec_attn_mask=None):
129-
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_attn_mask)
130-
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, enc_attn_mask)
128+
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
129+
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
130+
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
131131
dec_outputs = self.pos_ffn(dec_outputs)
132132
return dec_outputs, dec_self_attn, dec_enc_attn
133133

134134
class Encoder(nn.Module):
135-
136135
def __init__(self):
137136
super(Encoder, self).__init__()
138137
self.src_emb = nn.Embedding(src_vocab_size, d_model)
@@ -141,44 +140,44 @@ def __init__(self):
141140

142141
def forward(self, enc_inputs): # enc_inputs : [batch_size x source_len]
143142
enc_outputs = self.src_emb(enc_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,5]]))
143+
enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs)
144144
enc_self_attns = []
145145
for layer in self.layers:
146-
enc_outputs, enc_self_attn = layer(enc_outputs)
146+
enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
147147
enc_self_attns.append(enc_self_attn)
148148
return enc_outputs, enc_self_attns
149149

150150
class Decoder(nn.Module):
151-
152151
def __init__(self):
153152
super(Decoder, self).__init__()
154153
self.tgt_emb = nn.Embedding(tgt_vocab_size, d_model)
155154
self.pos_emb = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(tgt_len+1 , d_model),freeze=True)
156155
self.layers = nn.ModuleList([DecoderLayer() for _ in range(n_layers)])
157156

158-
def forward(self, dec_inputs, enc_inputs, enc_outputs, dec_attn_mask=None): # dec_inputs : [batch_size x target_len]
157+
def forward(self, dec_inputs, enc_inputs, enc_outputs): # dec_inputs : [batch_size x target_len]
159158
dec_outputs = self.tgt_emb(dec_inputs) + self.pos_emb(torch.LongTensor([[1,2,3,4,5]]))
160-
dec_enc_attn_pad_mask = get_attn_pad_mask(dec_inputs, enc_inputs)
159+
dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs)
160+
dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
161+
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
162+
163+
dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs)
161164

162165
dec_self_attns, dec_enc_attns = [], []
163166
for layer in self.layers:
164-
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs,
165-
enc_attn_mask=dec_enc_attn_pad_mask,
166-
dec_attn_mask=dec_attn_mask)
167+
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
167168
dec_self_attns.append(dec_self_attn)
168169
dec_enc_attns.append(dec_enc_attn)
169170
return dec_outputs, dec_self_attns, dec_enc_attns
170171

171172
class Transformer(nn.Module):
172-
173173
def __init__(self):
174174
super(Transformer, self).__init__()
175175
self.encoder = Encoder()
176176
self.decoder = Decoder()
177177
self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
178-
179-
def forward(self, enc_inputs, dec_inputs, decoder_mask=None):
178+
def forward(self, enc_inputs, dec_inputs):
180179
enc_outputs, enc_self_attns = self.encoder(enc_inputs)
181-
dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs, decoder_mask)
180+
dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
182181
dec_logits = self.projection(dec_outputs) # dec_logits : [batch_size x src_vocab_size x tgt_vocab_size]
183182
return dec_logits.view(-1, dec_logits.size(-1)), enc_self_attns, dec_self_attns, dec_enc_attns
184183

@@ -192,18 +191,16 @@ def greedy_decoder(model, enc_input, start_symbol):
192191
:param start_symbol: The start symbol. In this example it is 'S' which corresponds to index 4
193192
:return: The target input
194193
"""
195-
memory, attention = model.encoder(enc_input)
196-
dec_input = torch.ones(1, 5).fill_(0).type_as(enc_input.data)
197-
dec_mask = torch.from_numpy(np.triu(np.ones((1, 5, 5)), 1).astype('uint8')) == 0
194+
enc_outputs, enc_self_attns = model.encoder(enc_input)
195+
dec_input = torch.zeros(1, 5).type_as(enc_input.data)
198196
next_symbol = start_symbol
199197
for i in range(0, 5):
200198
dec_input[0][i] = next_symbol
201-
out = model.decoder(Variable(dec_input), enc_input, memory, dec_mask)
202-
projected = model.projection(out[0])
203-
prob = projected.view(-1, projected.size(-1))
204-
prob = prob.data.max(1, keepdim=True)[1]
199+
dec_outputs, _, _ = model.decoder(dec_input, enc_input, enc_outputs)
200+
projected = model.projection(dec_outputs)
201+
prob = projected.squeeze(0).max(dim=-1, keepdim=False)[1]
205202
next_word = prob.data[i]
206-
next_symbol = next_word[0]
203+
next_symbol = next_word.item()
207204
return dec_input
208205

209206
def showgraph(attn):
@@ -232,7 +229,7 @@ def showgraph(attn):
232229
optimizer.step()
233230

234231
# Test
235-
greedy_dec_input = greedy_decoder(model, enc_inputs, start_symbol=4)
232+
greedy_dec_input = greedy_decoder(model, enc_inputs, start_symbol=tgt_vocab["S"])
236233
predict, _, _, _ = model(enc_inputs, greedy_dec_input)
237234
predict = predict.data.max(1, keepdim=True)[1]
238235
print(sentences[0], '->', [number_dict[n.item()] for n in predict.squeeze()])

0 commit comments

Comments
 (0)