forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ops.py
472 lines (394 loc) · 21.5 KB
/
test_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
from functools import partial, wraps
import torch
from torch.testing import FileCheck
from torch.testing._internal.common_utils import \
(TestCase, run_tests, IS_SANDCASTLE, clone_input_helper)
from torch.testing._internal.common_methods_invocations import \
(op_db)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, ops, onlyOnCPUAndCUDA, skipCUDAIfRocm, OpDTypes)
from torch.testing._internal.common_jit import JitCommonTestCase, check_against_reference
from torch.autograd.gradcheck import gradcheck, gradgradcheck
from torch.testing._internal.jit_metaprogramming_utils import create_script_fn, create_traced_fn, \
check_alias_annotation
from torch.testing._internal.jit_utils import disable_autodiff_subgraph_inlining
# Tests that apply to all operators
class TestOpInfo(TestCase):
exact_dtype = True
# Verifies that ops have their unsupported dtypes
# registered correctly by testing that each claimed unsupported dtype
# throws a runtime error
@skipCUDAIfRocm
@onlyOnCPUAndCUDA
@ops(op_db, dtypes=OpDTypes.unsupported)
def test_unsupported_dtypes(self, device, dtype, op):
# sample_inputs can have a function for generating the input that doesn't work for specified dtype
# https://github.com/pytorch/pytorch/issues/49024
with self.assertRaises(RuntimeError):
samples = op.sample_inputs(device, dtype)
if len(samples) == 0:
self.skipTest("Skipped! No sample inputs!")
# NOTE: only tests on first sample
sample = samples[0]
op(*sample.input, *sample.args, **sample.kwargs)
# Verifies that ops have their supported dtypes
# registered correctly by testing that each claimed supported dtype
# does NOT throw a runtime error
@onlyOnCPUAndCUDA
@ops(op_db, dtypes=OpDTypes.supported)
def test_supported_dtypes(self, device, dtype, op):
samples = op.sample_inputs(device, dtype)
if len(samples) == 0:
self.skipTest("Skipped! No sample inputs!")
# NOTE: only tests on first sample
sample = samples[0]
op(*sample.input, *sample.args, **sample.kwargs)
# gradcheck requires double precision
_gradcheck_ops = partial(ops, dtypes=OpDTypes.supported,
allowed_dtypes=[torch.double, torch.cdouble])
class TestGradients(TestCase):
exact_dtype = True
# Copies inputs to inplace operations to avoid inplace modifications
# to leaves requiring gradient
def _get_safe_inplace(self, inplace_variant):
@wraps(inplace_variant)
def _fn(t, *args, **kwargs):
return inplace_variant(t.clone(), *args, **kwargs)
return _fn
def _check_helper(self, device, dtype, op, variant, check):
if variant is None:
self.skipTest("Skipped! Variant not implemented.")
if not op.supports_dtype(dtype, torch.device(device).type):
self.skipTest(f"Skipped! {op.name} does not support dtype {str(dtype)}")
samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
if sample.output_process_fn_grad is not None:
out_fn = sample.output_process_fn_grad
def variant_out_fn(*args, **kwargs):
return out_fn(variant(*args, **kwargs))
else:
variant_out_fn = variant
def fn(*inputs):
output = variant_out_fn(*inputs, **sample.kwargs)
return op.output_func(output)
if check == 'gradcheck':
self.assertTrue(gradcheck(fn, (*sample.input,) + sample.args,
check_batched_grad=op.check_batched_grad,
check_grad_dtypes=True))
elif check == 'gradgradcheck':
self.assertTrue(gradgradcheck(fn, (*sample.input,) + sample.args,
gen_non_contig_grad_outputs=False,
check_batched_grad=op.check_batched_gradgrad,
check_grad_dtypes=True))
self.assertTrue(gradgradcheck(fn, (*sample.input,) + sample.args,
gen_non_contig_grad_outputs=True,
check_batched_grad=op.check_batched_gradgrad,
check_grad_dtypes=True))
else:
self.assertTrue(False, msg="Unknown check requested!")
def _grad_test_helper(self, device, dtype, op, variant):
return self._check_helper(device, dtype, op, variant, 'gradcheck')
def _gradgrad_test_helper(self, device, dtype, op, variant):
return self._check_helper(device, dtype, op, variant, 'gradgradcheck')
def _skip_helper(self, op, dtype):
if not op.supports_autograd:
self.skipTest("Skipped! autograd not supported")
if not op.test_complex_grad and dtype.is_complex:
self.skipTest("Skipped! complex grad tests marked to skip.")
# Tests that gradients are computed correctly
@_gradcheck_ops(op_db)
def test_fn_grad(self, device, dtype, op):
self._skip_helper(op, dtype)
self._grad_test_helper(device, dtype, op, op.get_op())
# Method grad (and gradgrad, see below) tests are disabled since they're
# costly and redundant with function grad (and gradgad) tests
# @_gradcheck_ops(op_db)
# def test_method_grad(self, device, dtype, op):
# self._skip_helper(op, dtype)
# self._grad_test_helper(device, dtype, op, op.get_method())
@_gradcheck_ops(op_db)
def test_inplace_grad(self, device, dtype, op):
self._skip_helper(op, dtype)
if not op.test_inplace_grad:
self.skipTest("Skipped! Inplace gradcheck marked to skip.")
self._grad_test_helper(device, dtype, op, self._get_safe_inplace(op.get_inplace()))
# Test that gradients of gradients are computed correctly
@_gradcheck_ops(op_db)
def test_fn_gradgrad(self, device, dtype, op):
self._skip_helper(op, dtype)
self._gradgrad_test_helper(device, dtype, op, op.get_op())
# Method gradgrad (and grad, see above) tests are disabled since they're
# costly and redundant with function gradgrad (and grad) tests
# @_gradcheck_ops(op_db)
# def test_method_gradgrad(self, device, dtype, op):
# self._skip_helper(op, dtype)
# self._gradgrad_test_helper(device, dtype, op, op.get_method())
@_gradcheck_ops(op_db)
def test_inplace_gradgrad(self, device, dtype, op):
self._skip_helper(op, dtype)
if not op.test_inplace_grad:
self.skipTest("Skipped! Inplace gradgradcheck marked to skip.")
self._gradgrad_test_helper(device, dtype, op, self._get_safe_inplace(op.get_inplace()))
# Tests operators for consistency between JIT and eager, also checks
# correctness of JIT specific alias schemas and intended
# autodifferentiation behavior.
# Inherits from JitCommonTestCase instead of TestCase directly to share
# functionality with original test_jit.py method operator tests
class TestCommon(JitCommonTestCase):
exact_dtype = True
# Compares variant's backward
# NOTE: verifies it fails when the forward fails
def check_variant_backward(self, input, forward_result, expected_grad, expected_exception):
variant_exception_during_backwards = False
try:
forward_result.sum().backward()
variant_grad = input.grad
input.grad = None
except Exception as e:
if not expected_exception:
self.fail("Unexpected exception during backwards!")
variant_exception_during_backwards = True
if expected_exception != variant_exception_during_backwards:
self.fail("Unexpected success during backwards!")
if not expected_exception:
self.assertEqual(variant_grad, expected_grad)
# Tests that the forward and backward passes of operations produce the
# same values for the cross-product of op variants (method, inplace)
# against eager's gold standard op function variant
@ops(op_db)
def test_variant_consistency_eager(self, device, dtype, op):
test_backward = op.supports_autograd and op.test_complex_grad or not dtype.is_complex
samples = op.sample_inputs(device, dtype, requires_grad=test_backward)
if len(samples) == 0:
self.skipTest("Skipped! No sample inputs!")
for sample in samples:
# Acquires variants to test
method = op.get_method()
inplace = op.get_inplace()
inplace_ops = [inplace, ] # list of all inplace ops: inplace variant + alias inplace variants if exist
aliases = []
for a_op in op.aliases:
aliases.append(a_op.op)
aliases.append(a_op.method_variant)
aliases.append(a_op.inplace_variant)
inplace_ops.append(a_op.inplace_variant)
aliases = tuple(aliases)
inplace_ops = tuple(v for v in inplace_ops if v is not None)
variants = (v for v in (method, inplace) + aliases if v is not None)
# Computes expected forward
# below calls op's function variant
expected_forward = op(*sample.input, *sample.args, **sample.kwargs)
# Computes expected backward
# NOTE: backward may fail for some dtypes
exception_during_backwards = False
expected_grad = None
try:
expected_forward.sum().backward()
expected_grad = sample.input.grad
sample.input.grad = None
except Exception as e:
exception_during_backwards = True
# Test eager consistency
for variant in variants:
# Verifies that inplace operations that promote int->float fail
# on tensors with integer dtypes.
if (variant in inplace_ops and not torch.can_cast(expected_forward.dtype, dtype)):
try:
variant_forward = variant(*(clone_input_helper(input) for input in sample.input),
*sample.args,
**sample.kwargs)
except Exception as e:
continue
self.fail("Inplace operation on integer tensor that should be promoted to float didn't fail!")
# Compares variant's forward
# Note: copy the tensor-type inputs when testing inplace operation
variant_forward = variant(*(clone_input_helper(input) if variant in inplace_ops else input
for input in sample.input),
*sample.args,
**sample.kwargs)
self.assertEqual(variant_forward, expected_forward)
# Compares variant's backward
if test_backward and (variant not in inplace_ops or op.test_inplace_grad):
self.check_variant_backward(sample.input, variant_forward,
expected_grad, exception_during_backwards)
# Tests that the forward and backward passes of operations produce the
# same values for the cross-product of op variants (function, method, inplace)
# and runtimes (eager, traced, scripted).
# TODO WARNING: inplace x {traced, scripted} not currently tested
@ops(op_db)
def test_variant_consistency_jit(self, device, dtype, op):
test_backward = op.supports_autograd and (
(dtype.is_complex and op.test_complex_grad) or
(dtype.is_floating_point and (not op.skip_bfloat16_grad or dtype != torch.bfloat16)))
samples = op.sample_inputs(device, dtype, requires_grad=test_backward)
if len(samples) == 0:
self.skipTest("Skipped! No sample inputs!")
for sample in samples:
# Acquires variants to test
func = op.get_op()
method = op.get_method()
inplace = op.get_inplace()
variants = {
'function': func, 'method': method,
# TODO: inplace tests currently fail
# 'inplace': inplace,
}
# Test traced and scripted consistency
for func_type, variant in variants.items():
if variant is None:
continue
# Create accessor for script function variant
name = op.name + '_' if func_type == 'inplace' else op.name
# run with disable_autodiff_subgraph_inlining(True) to test
# autodiff support. Context manager forces the graph to contain
# DifferentiableGraph nodes if they are present
with disable_autodiff_subgraph_inlining():
# Check scripted forward, grad, and grad grad
script_fn = create_script_fn(self, name, func_type)
check_against_reference(self,
script_fn,
func,
op.output_func,
(*sample.input,) + sample.args,
sample.kwargs,
no_grad=not test_backward)
# Check traced forward, grad, and grad grad
traced_fn = create_traced_fn(self, variant)
check_against_reference(self,
traced_fn,
func,
op.output_func,
(*sample.input,) + sample.args,
sample.kwargs,
no_grad=not test_backward)
# Check alias annotation schema for correctness (make
# sure inputs that aren't supposed to be modified aren't)
# Note: only runs in float32 and int64 because schema isn't affected by dtype,
# so running it on all dtypes is would be excessive
if dtype in [torch.float32, torch.int32]:
check_alias_annotation(name, (*sample.input,) + sample.args, sample.kwargs,
func_type=func_type, aten_name=op.aten_name)
# Check autodifferentiation of nodes for traced and scripted graphs, only need to check once per sample
if dtype is torch.float32:
# Sandcastle doesn't fuse nodes
if IS_SANDCASTLE:
# fusible nodes are expected to be found in FusionGroups in the DifferentiableGraphs
nonfusible_nodes = op.autodiff_nonfusible_nodes + op.autodiff_fusible_nodes
fusible_nodes = []
else:
nonfusible_nodes = op.autodiff_nonfusible_nodes
fusible_nodes = op.autodiff_fusible_nodes
self.assertAutodiffNode(traced_fn.last_graph, op.assert_autodiffed, nonfusible_nodes, fusible_nodes)
self.assertAutodiffNode(script_fn.last_graph, op.assert_autodiffed, nonfusible_nodes, fusible_nodes)
@ops(op_db)
def test_out(self, device, dtype, op):
if not op.supports_tensor_out:
self.skipTest("Skipped! Operator %s does not support out=..." % op.name)
samples = op.sample_inputs(device, dtype)
if len(samples) == 0:
self.skipTest("Skipped! No sample inputs!")
# NOTE: only tests on first sample
sample = samples[0]
# call it normally to get the expected result
expected = op(*sample.input, *sample.args, **sample.kwargs)
def _test(tested_op):
# call it with out=... and check we get the expected result
out_kwargs = sample.kwargs.copy()
out_kwargs['out'] = out = torch.empty_like(expected)
tested_op(*sample.input, *sample.args, **out_kwargs)
self.assertEqual(expected, out)
_test(op)
for a_op in op.aliases:
_test(a_op)
@ops([op for op in op_db if op.aliases])
def test_jit_alias_remapping(self, device, dtype, op):
samples = op.sample_inputs(device, dtype, requires_grad=True)
if len(samples) == 0:
self.skipTest("Skipped! No sample inputs!")
# NOTE: only tests on first sample
sample = samples[0]
# Prepare data for test scripting
# Below we prepare strings of args/kwargs with and without type annotations.
# These strings are inserted into function template strings which is then torch scripted.
# - args string is ["t0", "t1", ...] corresponds to the input tensors required by the op
# - args_annot_kw is the string for the template function signature, for example,
# ["t0", "t1", "s0: float", "s1: bool", "max: float = 1.0", "min: float = 0.0"] ->
# def fn(t0, t1, s0: float, s1: bool, max: float = 1.0, min: float = 0.0)
# - args_kw is the string of args/kwargs used to call the op, same as args_annot_kw but
# without type annotations
args = [f"t{i}" for i in range(len(sample.input))]
args_annot_kw = args + \
[f"s{i}: {type(v).__name__}" for i, v in enumerate(sample.args)] + \
[f"{k}: {type(v).__name__} = {v}" for k, v in sample.kwargs.items()]
args_kw = args + \
[f"s{i}" for i in range(len(sample.args))] + \
[f"{k}={v}" for k, v in sample.kwargs.items()]
# Prepare data for test tracing
sample_args_kwargs = ()
if len(sample.args) > 0:
sample_args_kwargs += (sample.args, )
if len(sample.kwargs) > 0:
sample_args_kwargs += (sample.kwargs, )
original_name = op.name
original_name_inplace = original_name + "_"
expected_dtype = op(*sample.input, *sample.args, **sample.kwargs).dtype
for a_op in op.aliases:
inplace = a_op.inplace_variant
method_or_inplace = [a_op.inplace_variant, a_op.method_variant]
variants = (v for v in (a_op.op, a_op.method_variant, a_op.inplace_variant) if v is not None)
# Test scripting:
for variant in variants:
variant_name = variant.__name__
op_name = original_name_inplace if variant is inplace else original_name
if variant in method_or_inplace:
fn_template = '''
def _fn(t0{c}{args_annot_kw}):
return t0.{alias_name}({args_kw})
'''
# remove the first input tensor
script = fn_template.format(
c=", " if len(args_kw[1:]) > 1 else "",
args_annot_kw=", ".join(args_annot_kw[1:]),
args_kw=", ".join(args_kw[1:]),
alias_name=variant_name,
)
else:
fn_template = '''
def _fn({args_annot_kw}):
return variant({args_kw})
'''
script = fn_template.format(
args_annot_kw=", ".join(args_annot_kw),
args_kw=", ".join(args_kw),
)
scripted = torch.jit.CompilationUnit(script)._fn
if (variant is inplace and not torch.can_cast(expected_dtype, dtype)):
try:
inp = (clone_input_helper(input) for input in sample.input)
scripted(*inp, *sample.args, **sample.kwargs)
except Exception as e:
continue
self.fail("Inplace operation on integer tensor that should be promoted to float didn't fail!")
inp = (clone_input_helper(input) for input in sample.input)
scripted(*inp, *sample.args, **sample.kwargs)
inp = (clone_input_helper(input) for input in sample.input)
graph = scripted.graph_for(*inp, *sample.args, **sample.kwargs)
FileCheck().check(op_name).check_not(variant_name).run(graph)
# Test tracing:
for variant in variants:
variant_name = variant.__name__
op_name = original_name_inplace if variant is inplace else original_name
def _fn(*sample_args, **sample_kwargs):
return variant(*sample_args, **sample_kwargs)
inp = (*(clone_input_helper(input) for input in sample.input), ) + sample_args_kwargs
traced = torch.jit.trace(_fn, *inp)
inp = (*(clone_input_helper(input) for input in sample.input), ) + sample_args_kwargs
traced(*inp)
inp = (*(clone_input_helper(input) for input in sample.input), ) + sample_args_kwargs
graph = traced.graph_for(*inp)
FileCheck().check(op_name).check_not(variant_name).run(graph)
instantiate_device_type_tests(TestOpInfo, globals())
instantiate_device_type_tests(TestGradients, globals())
instantiate_device_type_tests(TestCommon, globals())
if __name__ == '__main__':
run_tests()