forked from satijalab/seurat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFindMarkersNode.Rd
58 lines (50 loc) · 2.29 KB
/
FindMarkersNode.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/differential_expression.R
\name{FindMarkersNode}
\alias{FindMarkersNode}
\title{Gene expression markers of identity classes defined by a phylogenetic clade}
\usage{
FindMarkersNode(object, node, tree.use = NULL, genes.use = NULL,
logfc.threshold = 0.25, test.use = "wilcox", assay.type = "RNA", ...)
}
\arguments{
\item{object}{Seurat object}
\item{node}{The node in the phylogenetic tree to use as a branch point}
\item{tree.use}{Can optionally pass the tree to be used. Default uses the tree in [email protected]}
\item{genes.use}{Genes to test. Default is to use all genes}
\item{logfc.threshold}{Limit testing to genes which show, on average, at least
X-fold difference (log-scale) between the two groups of cells. Default is 0.25
Increasing logfc.threshold speeds up the function, but can miss weaker signals.}
\item{test.use}{Denotes which test to use. Available options are:
\itemize{
\item{"wilcox"} : Wilcoxon rank sum test (default)
\item{"bimod"} : Likelihood-ratio test for single cell gene expression,
(McDavid et al., Bioinformatics, 2013)
\item{"roc"} : Standard AUC classifier
\item{"t"} : Student's t-test
\item{"tobit"} : Tobit-test for differential gene expression (Trapnell et
al., Nature Biotech, 2014)
\item{"poisson"} : Likelihood ratio test assuming an underlying poisson
distribution. Use only for UMI-based datasets
\item{"negbinom"} : Likelihood ratio test assuming an underlying negative
binomial distribution. Use only for UMI-based datasets
\item{"MAST} : GLM-framework that treates cellular detection rate as a
covariate (Finak et al, Genome Biology, 2015)
\item{"DESeq2} : DE based on a model using the negative binomial
distribution (Love et al, Genome Biology, 2014)
}}
\item{assay.type}{Type of assay to fetch data for (default is RNA)}
\item{...}{Additional arguments passed to FindMarkers}
}
\value{
Matrix containing a ranked list of putative markers, and associated
statistics (p-values, ROC score, etc.)
}
\description{
Finds markers (differentially expressed genes) based on a branching point (node) in
the phylogenetic tree. Markers that define clusters in the left branch are positive markers.
Markers that define the right branch are negative markers.
}
\examples{
FindMarkersNode(pbmc_small, 5)
}