-
Notifications
You must be signed in to change notification settings - Fork 0
/
euler_21.c
47 lines (38 loc) · 1.18 KB
/
euler_21.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
Amicable numbers
Problem 21
Let d(n) be defined as the sum of proper divisors of n (numbers less than n
which divide evenly into n).
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and
each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55
and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71
and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
*/
#include <stdio.h>
#include <math.h>
int main() {
int dict[10000] = {0};
int answer = 0;
for (int n = 2; n < 10000; n++) {
int sum = 1;
float root = sqrt(n);
int intRoot = (int)root;
for (int i = 2; i < intRoot-1; i++) {
if (n % i == 0)
sum += i + n/i;
}
if (intRoot == root)
sum += intRoot;
dict[n] = sum;
}
for (int i = 0; i < 10000; i++) {
int val = dict[i];
if ((0 < val && val < 10000) && (val != i) && (dict[val] == i)) {
answer += val;
printf("%d is amicable to %d\n", val, dict[val]);
}
}
printf("%d\n", answer);
}