-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdetect.cpp
170 lines (146 loc) · 5.59 KB
/
detect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include "anchor_generator.h"
#include "detect.h"
#include "tools.h"
#include<iostream>
using namespace std;
using namespace cv;
using namespace caffe;
uint64_t current_timestamp() {
struct timeval te;
gettimeofday(&te, NULL); // get current time
return te.tv_sec*1000LL + te.tv_usec/1000; // caculate milliseconds
}
/*void printMat(const cv::Mat &image)
{
uint8_t *myData = image.data;
int width = image.cols;
int height = image.rows;
int _stride = image.step;//in case cols != strides
for(int i = 0; i < height; i++)
{
for(int j = 0; j < width; j++)
{
uint8_t val = myData[ i * _stride + j];
cout << val;
//do whatever you want with your value
}
}
cout << endl;
}*/
Detector::Detector(const string& model_file,
const string& weights_file,
const float confidence,
const float nms,
const string& gpu_mode)
{
if(gpu_mode == "gpu")
{
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
Caffe::SetDevice(0);
#endif // CPU_ONLY
}
else
{
Caffe::set_mode(Caffe::CPU);
}
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(weights_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
confidence_threshold =confidence;
nms_threshold = nms;
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
}
void Detector::preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels)
{
cv::Mat sample, sample_resized, sample_float;
if (img.channels() == 3 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels_ == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels_ == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
//cout<<"img1"<<img.rows<<endl;
//cv::cvtColor(img, sample, cv::COLOR_BGR2RGB);
if(sample.size()!=input_geometry_)
{
//cout<<"need to be resized"<<endl;
ratio_w = float(img.cols)/float(input_geometry_.width);
ratio_h = float(img.rows)/float(input_geometry_.height);
//cout<<"ratio_wratio_w"<<ratio_w <<"ratio_hratio_h "<<ratio_h<<endl;
cv::resize(sample, sample_resized, input_geometry_);
//cout<<"img2"<<img.rows<<endl;
}
else
sample_resized=sample;
if (num_channels_ == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
//cout<<"img3"<<img.rows<<endl;
cv::split(sample_float, *input_channels);
}
void Detector::wrapInputLayer(std::shared_ptr<caffe::Net<float> > net_, std::vector<cv::Mat>* input_channels)
{
caffe::Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
std::vector<Anchor> Detector:: Detect(cv::Mat& img)
{
//cout << "input.rows :"<<input.rows << " "<< "fd_h_ :"<<fd_h_<<endl;
//cout<<"input.cols :"<<input.cols <<" "<<"fd_w_ :" << fd_w_<<endl;
//cout<< "input.channels():"<<input.channels()<<" "<<"fd_c_: "<<fd_c_<<endl;
//assert(input.rows == fd_h_ && input.cols == fd_w_ && input.channels() == fd_c_);
std::vector<cv::Mat> input_channels;
wrapInputLayer(net_, &input_channels);
preprocess(img, &input_channels);
net_->Forward();
//extern std::vector<int> _feat_stride_fpn;
//extern std::map<int, AnchorCfg> anchor_cfg;
std::vector<AnchorGenerator> ac(_feat_stride_fpn.size()); //_feat_stride_fpn.size()=3 初始化容器容量为3
for (int i = 0; i < _feat_stride_fpn.size(); ++i) {
int stride = _feat_stride_fpn[i];
ac[i].Init(stride, anchor_cfg[stride], false);
}
std::vector<Anchor> proposals;
proposals.clear();
for (int i = 0; i < _feat_stride_fpn.size(); ++i)
{
char clsname[100]; sprintf(clsname, "face_rpn_cls_prob_reshape_stride%d", _feat_stride_fpn[i]);
char regname[100]; sprintf(regname, "face_rpn_bbox_pred_stride%d", _feat_stride_fpn[i]);
char ptsname[100]; sprintf(ptsname, "face_rpn_landmark_pred_stride%d", _feat_stride_fpn[i]);
const caffe::Blob<float>* clsBlob = net_->blob_by_name(clsname).get();
const caffe::Blob<float>* regBlob = net_->blob_by_name(regname).get();
const caffe::Blob<float>* ptsBlob = net_->blob_by_name(ptsname).get();
ac[i].FilterAnchor(clsBlob, regBlob, ptsBlob, proposals,ratio_w,ratio_h,confidence_threshold);
//printf("stride %d, res size %d\n", _feat_stride_fpn[i], proposals.size());
/*for (int r = 0; r < proposals.size(); ++r)
{
proposals[r].print();
}*/
}
// nms
std::vector<Anchor> result;
nms_cpu(proposals, nms_threshold, result);
//printf("final result %d\n", result.size());
//result[0].print();
return result;
}