-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathinference.py
214 lines (196 loc) · 10.6 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
# Copyright (c) Xuangeng Chu ([email protected])
import os
import torch
import argparse
import lightning
import numpy as np
import torchvision
from tqdm.rich import tqdm
from core.data import DriverData
from core.models import build_model
from core.libs.utils import ConfigDict
from core.libs.GAGAvatar_track.engines import CoreEngine as TrackEngine
def inference(image_path, driver_path, resume_path, force_retrack=False, device='cuda'):
lightning.fabric.seed_everything(42)
driver_path = driver_path[:-1] if driver_path.endswith('/') else driver_path
driver_name = os.path.basename(driver_path).split('.')[0]
# load model
print(f'Loading model...')
lightning_fabric = lightning.Fabric(accelerator=device, strategy='auto', devices=[0],)
lightning_fabric.launch()
full_checkpoint = lightning_fabric.load(resume_path)
meta_cfg = ConfigDict(init_dict=full_checkpoint['meta_cfg'])
model = build_model(model_cfg=meta_cfg.MODEL)
model.load_state_dict(full_checkpoint['model'])
model = lightning_fabric.setup(model)
model.eval()
print(str(meta_cfg))
track_engine = TrackEngine(focal_length=12.0, device=device)
# build input data
feature_name = os.path.basename(image_path).split('.')[0]
feature_data = get_tracked_results(image_path, track_engine, force_retrack=force_retrack)
if feature_data is None:
print(f'Finish inference, no face in input: {image_path}.')
return
# build driver data
### ------------ run on demo or tracked images/videos ---------- ###
if os.path.isdir(driver_path):
driver_name = os.path.basename(driver_path[:-1] if driver_path.endswith('/') else driver_path)
driver_dataset = DriverData(driver_path, feature_data, meta_cfg.DATASET.POINT_PLANE_SIZE)
driver_dataloader = torch.utils.data.DataLoader(driver_dataset, batch_size=1, num_workers=2, shuffle=False)
else:
driver_name = os.path.basename(driver_path).split('.')[0]
driver_data = get_tracked_results(driver_path, track_engine, force_retrack=force_retrack)
if driver_data is None:
print(f'Finish inference, no face in driver: {image_path}.')
return
driver_dataset = DriverData({driver_name: driver_data}, feature_data, meta_cfg.DATASET.POINT_PLANE_SIZE)
driver_dataloader = torch.utils.data.DataLoader(driver_dataset, batch_size=1, num_workers=2, shuffle=False)
### --------- if you need to run on your images online ---------- ###
# driver_data = track_engine.track_image(your_images, your_image_names) # list of tensor, list of str
# driver_dataset = DriverData(driver_data, feature_data, meta_cfg.DATASET.POINT_PLANE_SIZE)
# driver_dataloader = torch.utils.data.DataLoader(driver_dataset, batch_size=1, num_workers=2, shuffle=False)
driver_dataloader = lightning_fabric.setup_dataloaders(driver_dataloader)
# run inference process
_water_mark_size = (82, 256)
_water_mark = torchvision.io.read_image('demos/gagavatar_logo.png', mode=torchvision.io.ImageReadMode.RGB_ALPHA).float()/255.0
_water_mark = torchvision.transforms.functional.resize(_water_mark, _water_mark_size, antialias=True).to(device)
images = []
### ----------- if you need to run multiview results ------------ ###
# view_angles = np.linspace(angle, -angle, frame_num)
# batch['t_transform'] = build_camera(view_angles[idx])
for idx, batch in enumerate(tqdm(driver_dataloader)):
render_results = model.forward_expression(batch)
gt_rgb = render_results['t_image'].clamp(0, 1)
# pred_rgb = render_results['gen_image'].clamp(0, 1)
pred_sr_rgb = render_results['sr_gen_image'].clamp(0, 1)
pred_sr_rgb = add_water_mark(pred_sr_rgb, _water_mark)
visulize_rgbs = torchvision.utils.make_grid([gt_rgb[0], pred_sr_rgb[0]], nrow=4, padding=0)
images.append(visulize_rgbs.cpu())
dump_dir = os.path.join('render_results', meta_cfg.MODEL.NAME.split('_')[0])
os.makedirs(dump_dir, exist_ok=True)
if driver_dataset._is_video:
dump_path = os.path.join(dump_dir, f'{driver_name}_{feature_name}.mp4')
merged_images = torch.stack(images)
feature_images = torch.stack([feature_data['image']]*merged_images.shape[0])
merged_images = torch.cat([feature_images, merged_images], dim=-1)
merged_images = (merged_images * 255.0).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(dump_path, merged_images, fps=25.0)
else:
dump_path = os.path.join(dump_dir, f'{driver_name}_{feature_name}.jpg')
merged_images = torchvision.utils.make_grid(images, nrow=5, padding=0)
feature_images = torchvision.utils.make_grid([feature_data['image']]*(merged_images.shape[-2]//512), nrow=1, padding=0)
merged_images = torch.cat([feature_images, merged_images], dim=-1)
torchvision.utils.save_image(merged_images, dump_path)
print(f'Finish inference: {dump_path}.')
def get_tracked_results(image_path, track_engine, force_retrack=False):
if not is_image(image_path):
print(f'Please input a image path, got {image_path}.')
return None
tracked_pt_path = 'render_results/tracked/tracked.pt'
if not os.path.exists(tracked_pt_path):
os.makedirs('render_results/tracked', exist_ok=True)
torch.save({}, tracked_pt_path)
tracked_data = torch.load(tracked_pt_path, weights_only=False)
image_base = os.path.basename(image_path)
if image_base in tracked_data and not force_retrack:
print(f'Load tracking result from cache: {tracked_pt_path}.')
else:
print(f'Tracking {image_path}...')
image = torchvision.io.read_image(image_path, mode=torchvision.io.ImageReadMode.RGB).float()
feature_data = track_engine.track_image([image], [image_path])
if feature_data is not None:
feature_data = feature_data[image_path]
torchvision.utils.save_image(
torch.tensor(feature_data['vis_image']), 'render_results/tracked/{}.jpg'.format(image_base.split('.')[0])
)
else:
print(f'No face detected in {image_path}.')
return None
tracked_data[image_base] = feature_data
# track all images in this folder
other_names = [i for i in os.listdir(os.path.dirname(image_path)) if is_image(i)]
other_paths = [os.path.join(os.path.dirname(image_path), i) for i in other_names]
if len(other_paths) <= 35:
print('Track on all images in this folder to save time.')
other_images = [torchvision.io.read_image(imp, mode=torchvision.io.ImageReadMode.RGB).float() for imp in other_paths]
try:
other_feature_data = track_engine.track_image(other_images, other_names)
for key in other_feature_data:
torchvision.utils.save_image(
torch.tensor(other_feature_data[key]['vis_image']), 'render_results/tracked/{}.jpg'.format(key.split('.')[0])
)
tracked_data.update(other_feature_data)
except Exception as e:
print(f'Error: {e}.')
# save tracking result
torch.save(tracked_data, tracked_pt_path)
feature_data = tracked_data[image_base]
for key in list(feature_data.keys()):
if isinstance(feature_data[key], np.ndarray):
feature_data[key] = torch.tensor(feature_data[key])
return feature_data
def is_image(image_path):
extension_name = image_path.split('.')[-1].lower()
return extension_name in ['jpg', 'png', 'jpeg']
def add_water_mark(image, water_mark):
_water_mark_rgb = water_mark[None, :3]
_water_mark_alpha = water_mark[None, 3:4].expand(-1, 3, -1, -1) * 0.8
_mark_patch = image[..., -water_mark.shape[-2]:, -water_mark.shape[-1]:]
_mark_patch = _mark_patch * (1-_water_mark_alpha) + _water_mark_rgb * _water_mark_alpha
image[..., -water_mark.shape[-2]:, -water_mark.shape[-1]:] = _mark_patch
return image
### ------- multi-view camera helper -------- ###
def build_camera(angle, ori_transforms=None, device='cuda'):
from pytorch3d.renderer.cameras import look_at_view_transform
if ori_transforms is None:
distance = 9.3
else:
distance = ori_transforms[..., 3].square().sum(dim=-1).sqrt()[0].item() * 1.0
device = ori_transforms.device
print(f'Camera distance: {distance}, angle: {angle}.')
R, T = look_at_view_transform(distance, 5, angle, device=device) # D, E, A
rotate_trans = torch.cat([R, T[:, :, None]], dim=-1)
return rotate_trans
### ------------ run speed test ------------- ###
def speed_test():
driver_path = './demos/vfhq_driver'
resume_path = './assets/GAGAvatar.pt'
lightning.fabric.seed_everything(42)
# load model
print(f'Loading model...')
lightning_fabric = lightning.Fabric(accelerator='cuda', strategy='auto', devices=[0],)
lightning_fabric.launch()
full_checkpoint = lightning_fabric.load(resume_path)
meta_cfg = ConfigDict(init_dict=full_checkpoint['meta_cfg'])
model = build_model(model_cfg=meta_cfg.MODEL)
model.load_state_dict(full_checkpoint['model'])
model = lightning_fabric.setup(model)
print(str(meta_cfg))
# build driver data
driver_name = os.path.basename(driver_path[:-1] if driver_path.endswith('/') else driver_path)
driver_dataset = DriverData(driver_path, None, meta_cfg.DATASET.POINT_PLANE_SIZE)
driver_dataloader = torch.utils.data.DataLoader(driver_dataset, batch_size=1, num_workers=2, shuffle=False)
driver_dataloader = lightning_fabric.setup_dataloaders(driver_dataloader)
# run inference process
for idx, batch in enumerate(tqdm(driver_dataloader)):
render_results = model.forward_expression(batch)
gt_rgb = render_results['t_image'].clamp(0, 1)
pred_sr_rgb = render_results['sr_gen_image'].clamp(0, 1)
print(f'Finish speed test.')
# torchvision.utils.save_image([gt_rgb[0], pred_sr_rgb[0]], 'speed_test.jpg')
if __name__ == '__main__':
import warnings
from tqdm.std import TqdmExperimentalWarning
warnings.simplefilter("ignore", category=TqdmExperimentalWarning, lineno=0, append=False)
# build args
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', '-i', required=True, type=str)
parser.add_argument('--driver_path', '-d', required=True, type=str)
parser.add_argument('--force_retrack', '-f', action='store_true')
parser.add_argument('--resume_path', '-r', default='./assets/GAGAvatar.pt', type=str)
args = parser.parse_args()
# launch
torch.set_float32_matmul_precision('high')
inference(args.image_path, args.driver_path, args.resume_path, args.force_retrack)