-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtrain.py
245 lines (230 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python
# Copyright (c) Xuangeng Chu ([email protected])
import os
import torch
import argparse
import lightning
import numpy as np
import torchvision
from tqdm import tqdm
from core.data import build_dataset
from core.models import build_model
from core.libs.utils import (
ConfigDict, rtqdm, device_parser,
calc_parameters, biuld_logger, calc_psnr, calc_ssim
)
def train(config, dataset, base_model, devices, debug=False):
# build config
meta_cfg = ConfigDict(
model_config_path=os.path.join('./configs/model', f'{config}.yaml'),
data_config_path=os.path.join('./configs/data', f'{dataset}.yaml')
)
lightning.fabric.seed_everything(42)
target_devices = device_parser(devices)
assert len(target_devices) == 1, f'Only support single GPU training: {target_devices}'
print(str(meta_cfg))
# setup model and optimizer
model = build_model(model_cfg=meta_cfg.MODEL)
optimizer, scheduler = model.configure_optimizers(meta_cfg.OPTIMIZE)
op_para_num, all_para_num = calc_parameters(model)
print('Number of parameters: {:.2f}M / {:.2f}M.'.format(op_para_num/1000000, all_para_num/1000000))
if base_model is not None:
assert os.path.exists(base_model), f'Base model not found: {base_model}.'
model.load_state_dict(torch.load(base_model, map_location='cpu', weights_only=True)['model'], strict=False)
print('Load base model from: {}.'.format(base_model))
# load dataset
train_dataset = build_dataset(data_cfg=meta_cfg.DATASET, split='train')
val_dataset = build_dataset(data_cfg=meta_cfg.DATASET, split='val')
val_dataset.slice(16)
print(f'Train Dataset: {len(train_dataset)}, Val Dataset: {len(val_dataset)}.')
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=meta_cfg.TRAIN.BATCH_SIZE, num_workers=meta_cfg.TRAIN.BATCH_SIZE, shuffle=True,
)
val_dataloader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, num_workers=1, shuffle=False,
)
lightning_trainer = Trainer(
meta_cfg, model, optimizer, scheduler,
train_dataloader, val_dataloader,
devices=target_devices, debug=debug,
)
lightning_trainer.run_fit()
class Trainer:
def __init__(
self, meta_cfg, model, optimizer, scheduler,
train_dataloader, val_dataloader, devices, debug=False,
):
self._debug = debug
self._meta_cfg, self._best_metric = meta_cfg, None
self._dump_dir = 'outputs' if debug else \
os.path.join('outputs', meta_cfg.TRAIN.EXP_STR, meta_cfg.TRAIN.TIME_STR,)
if not debug:
os.makedirs(os.path.join(self._dump_dir, 'examples'), exist_ok=False)
os.makedirs(os.path.join(self._dump_dir, 'checkpoints'), exist_ok=True)
self.logger = biuld_logger(os.path.join(self._dump_dir, 'train_log.txt'), name=f'train_{meta_cfg.TRAIN.TIME_STR}')
self.logger.debug(meta_cfg._raw_string)
else:
self.logger = biuld_logger(os.path.join(self._dump_dir, 'debug.txt'), name=f'train_{meta_cfg.TRAIN.TIME_STR}')
# build trainer
self.lightning_fabric = lightning.Fabric(
accelerator='cuda', strategy='auto', devices=devices, #precision='16-mixed'
)
self.lightning_fabric.launch()
# loop config
self._log_interval = 100
self._total_iters = meta_cfg.TRAIN.TRAIN_ITER
self._check_interval = meta_cfg.TRAIN.CHECK_INTERVAL if not debug else 50
# training materials
self.scheduler = scheduler
self.model, self.optimizer = self.lightning_fabric.setup(model, optimizer)
self.train_dataloader = self.lightning_fabric.setup_dataloaders(train_dataloader)
self.val_dataloader = self.lightning_fabric.setup_dataloaders(val_dataloader)
def run_fit(self, ):
# build bar
fit_bar = tqdm(range(1, self._total_iters+1)) if self._debug else \
rtqdm(range(1, self._total_iters+1))
train_iter = iter(self.train_dataloader)
self.model.train()
for iter_idx in fit_bar:
# get data and prepare
try:
batch_data = next(train_iter)
except StopIteration:
train_iter = iter(self.train_dataloader)
batch_data = next(train_iter)
# forward
train_frac = np.clip((iter_idx - 1) / (self._total_iters - 1), 0, 1)
render_results = self.model(batch_data, train_frac=train_frac, rand=True)
loss_metrics, show_metric = self.model.calc_metrics(render_results)
loss = sum(loss_metrics.values())
self.lightning_fabric.backward(loss)
# for param in self.model.parameters():
# param.grad.nan_to_num_()
# backward and step
with torch.no_grad():
self.optimizer.step()
self.optimizer.zero_grad(set_to_none=True)
self.scheduler.step()
# logger
self._logger(iter_idx, fit_bar, loss_metrics, show_metric)
# checkpoints
if iter_idx % self._check_interval == 0 or iter_idx == self._total_iters:
self.run_val(iter_idx)
self._save_checkpoints('latest.pt')
@torch.no_grad()
def run_val(self, iter_idx, save_ckpt=True):
val_iter = iter(self.val_dataloader)
_validation_outputs = []
self.model.eval()
for idx, batch_data in enumerate(val_iter):
render_results = self.model(batch_data, rand=False)
gt_rgb = render_results['t_image'].clamp(0, 1).cpu()
pred_rgb = render_results['sr_gen_image'].clamp(0, 1).cpu()
psnr = float(calc_psnr(pred_rgb, gt_rgb, data_range=(0.0, 1.0)))
ssim = float(calc_ssim(pred_rgb, gt_rgb, data_range=(0.0, 1.0)))
# visulize
gt_rgb[:, :, -150:, -150:] = self._resize(batch_data['f_image'].clamp(0, 1).cpu(), (150, 150))
pred_gs_rgb = render_results['gen_image'].clamp(0, 1).cpu()
visulize_rgbs = torchvision.utils.make_grid(torch.cat([gt_rgb, pred_gs_rgb, pred_rgb]), nrow=3, padding=0)
visulize_rgbs = self._resize(visulize_rgbs, 256)
_validation_outputs.append({'PSNR': psnr, 'SSIM': ssim, 'Image': visulize_rgbs})
merged_images = torchvision.utils.make_grid(
torch.stack([r['Image'] for r in _validation_outputs[:15]]), nrow=3, padding=0
)
merged_psnr = np.mean([r['PSNR'] for r in _validation_outputs])
merged_ssim = np.mean([r['SSIM'] for r in _validation_outputs])
log_str = 'Step: {:05d} / {}, \tPSNR: {:.2f}, \tSSIM: {:.4f}.'.format(
iter_idx, self._total_iters, merged_psnr, merged_ssim,
)
self.logger.debug(log_str)
if save_ckpt:
self._save_validation(iter_idx, merged_ssim, merged_images, log_str, larger_best=True)
del _validation_outputs
def _save_checkpoints(self, name='latest.pt', optimizer=False):
if self._debug:
return
saving_path = os.path.join(self._dump_dir, 'checkpoints')
# remove old best model
if name.startswith('best'):
models = os.listdir(saving_path)
for m in models:
if m.startswith('best'):
os.remove(os.path.join(saving_path, m))
state = {'model': self.model, 'meta_cfg': self._meta_cfg._dump}
if optimizer:
state['optimizer'] = self.optimizer
self.lightning_fabric.save(os.path.join(saving_path, name), state)
def _save_validation(self, iter_idx, metric, images, log_string, larger_best=True):
if self._debug:
validation_path = os.path.join(self._dump_dir, 'debug.jpg')
else:
validation_path = os.path.join(self._dump_dir, 'examples', f'{iter_idx}.jpg')
torchvision.utils.save_image(images, validation_path)
best_path = 'best_{}_{:.3f}.pt'.format(iter_idx, metric)
if self._best_metric is None:
self._best_metric = metric
self._save_checkpoints(best_path)
else:
if larger_best:
if metric >= self._best_metric:
self._best_metric = metric
self._save_checkpoints(best_path)
else:
if metric <= self._best_metric:
self._best_metric = metric
self._save_checkpoints(best_path)
def _logger(self, iter_idx, fit_bar, loss_metrics, show_metric):
if not hasattr(self, 'log_stats'):
self.log_stats, self.show_stats = [], []
# build fit bar and file log
learning_rate = self.optimizer.param_groups[0]['lr']
loss_metrics = torch.utils._pytree.tree_map(lambda x: x.item(), loss_metrics)
self.log_stats.append(loss_metrics); self.show_stats.append(show_metric)
self.log_stats = self.log_stats[-100:]; self.show_stats = self.show_stats[-100:]
show_metric = self._dict_mean(self.show_stats)
show_loss = sum([float(loss_metrics[k]) for k in loss_metrics])
fit_bar.set_postfix({'loss': "{:.4f}".format(show_loss), **show_metric})
if iter_idx % self._log_interval == 0:
log_metric = self._dict_mean(self.log_stats, "{:.4f}")
log_loss = sum([float(log_metric[k]) for k in log_metric])
log_psnr = float(show_metric['psnr'])
log_string = "{:05d} / {}: ".format(iter_idx, self._total_iters) + \
"lr={:.5f}, loss={:.4f}, psnr={:.2f} | ".format(learning_rate, log_loss, log_psnr) + \
", ".join([f'{k}={v}' for k, v in log_metric.items()])
if self._debug:
self.logger.info(log_string)
else:
self.logger.debug(log_string)
@staticmethod
def _resize(frames, tgt_size=(256, 256)):
if isinstance(tgt_size, torch.Tensor):
tgt_size = (tgt_size.shape[-2], tgt_size.shape[-1])
if frames.shape[-2:] == tgt_size:
return frames
else:
frames = torchvision.transforms.functional.resize(
frames, tgt_size, antialias=True
)
return frames
@staticmethod
def _dict_mean(dict_list, float_format='{:.2f}'):
mean_dict = {}
for key in dict_list[0].keys():
mean_dict[key] = float_format.format(np.mean([d[key] for d in dict_list]))
return mean_dict
if __name__ == "__main__":
# import warnings
# from tqdm.std import TqdmExperimentalWarning
# warnings.simplefilter("ignore", category=TqdmExperimentalWarning, lineno=0, append=False)
# build args
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-c', required=True, type=str)
parser.add_argument('--dataset', type=str)
parser.add_argument('--devices', '-d', default='0', type=str)
parser.add_argument('--basemodel', default=None, type=str)
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
print("Command Line Args: {}".format(args))
# launch
torch.set_float32_matmul_precision('high')
train(args.config, args.dataset, args.basemodel, args.devices, args.debug)