Skip to content

xhw205/GPLinker_torch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

实体关系抽取_GPLinker

介绍

实体关系抽取是文本结构化、构建专业知识图谱的核心 step。

本算法是 GPLinker 的 pytorch 复现(简单易懂,杜绝花里胡哨),该方法的核心是:

  • 对输入文本 S={w1,w2,...,wn} 的编码向量以【token-pair】标记方式建模 n×n 大小的词元矩阵,进而做实体识别、实体关系抽取任务。
  • 与之相似的工作有:TP-Linkermulti-head selectionWord-pair 等。较之传统的 BIO 序列标注、span 指针网络标注方式,token-pair 建模方式现在是实体关系抽取 sota 必备 schema。

数据集

中文医疗信息处理挑战榜 CBLUE 中 CMeIE 数据集,同样是 CHIP2020/2021 的医学实体关系抽取数据集。

环境

  • python 3.8.1
  • pytorch==1.8.1
  • transformer==4.9.2
  • configparser

预训练模型

RoBerta-zh-large下载

运行

请把 config.ini 中对应的【paths】换为你自己的

train

python main.py

predict

python predict.py

效果

1649379794(1).jpg

  • 使用医学实体关系抽取数据集,阿里天池在线测试F1分数【59.82%】,提交的测试结果在./result文件夹中

    【不再提供,可以直接提交的测试结果文件】

  • 之前复现的 CasRel 方法,参考 DeepIE 仓库 ,在线F1分数为【60.556%】,后续整理开源

    注意:TOP-1【66.044%】是百度知识图谱团队的 ERNIE ,基本属于吊打其余方法,但是对于在校生、小团队而言,F1分数如果能上【62%】就属于非常非常好了

  • 注意最新的 CBLUE 打榜,需要把生成的 CMeIE_test.json 后缀改为 jsonl,再压缩提交

TODO

  • 训练过程未根据验证集的F1分数保存最优模型,直接用的最后一个epoch的权重,有需要的自行实现就好了

  • 把globalpointer 替换 Efficient-GlobalPointer,torch的源码本人都已经公布,自行实现就好

About

CMeIE/CBLUE/CHIP/实体关系抽取/SPO抽取

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages