Skip to content

Latest commit

 

History

History
 
 

learnable_frontend

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

We currently provide recipe for the baseline model on TIMIT used in the paper. At first, prepare data for training (set the paths instead of [...], [DATA_DST] and [MODEL_DST])

python prepare.py \
  --src [...]/timit \
  --data_dst [DATA_DST] \
  --model_dst [MODEL_DST] \
  --sph2pipe [...]/sph2pipe_v2.5/sph2pipe

Besides TIMIT data the auxiliary files for acoustic model training/evaluation will be generated:

cd $MODEL_DST
tree -L 2
.
├── am
│   ├── lexicon.txt
│   └── tokens.txt

To train the baseline model run (Set the full path to wav2letter for [...]).

[...]/wav2letter/build/Train train --flagsfile train_baseline_conv_relu.cfg --minloglevel=0 --logtostderr=1

Citation

@inproceedings{zeghidour2018learning,
  title={Learning filterbanks from raw speech for phone recognition},
  author={Zeghidour, Neil and Usunier, Nicolas and Kokkinos, Iasonas and Schaiz, Thomas and Synnaeve, Gabriel and Dupoux, Emmanuel},
  booktitle={2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={5509--5513},
  year={2018},
  organization={IEEE}
}