Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

multi_pose #739

Open
lijain opened this issue Jun 12, 2020 · 2 comments
Open

multi_pose #739

lijain opened this issue Jun 12, 2020 · 2 comments

Comments

@lijain
Copy link

lijain commented Jun 12, 2020

Thank you for sharing this code. I would like to ask you more about_ Don't directly regress 17 corners in post as in target detection?
Another one is about multi_ The understanding of some parameters in post is right. Please correct them:
#中心点的热力图
hm = np.zeros((self.num_classes, output_res, output_res), dtype=np.float32)
#关节点的热力图
hm_hp = np.zeros((num_joints, output_res, output_res), dtype=np.float32)
#不同物体中心是否在一起的设置(代码中没用到)
dense_kps = np.zeros((num_joints, 2, output_res, output_res),
dtype=np.float32)
# 不同物体中心是否存在设置(代码中没用到)
dense_kps_mask = np.zeros((num_joints, output_res, output_res),
dtype=np.float32)
#物体长宽的设置
wh = np.zeros((self.max_objs, 2), dtype=np.float32)
#关节点位置的设置
kps = np.zeros((self.max_objs, num_joints * 2), dtype=np.float32)
#中心点下采样的误差
reg = np.zeros((self.max_objs, 2), dtype=np.float32)
#中心点的位置
ind = np.zeros((self.max_objs), dtype=np.int64)
# reg_mask回归的是有无目标,以掩码mask是否等1表示,返回self.max_objs个回归mask
# 这里相当于记载一张图片存在哪些目标,有的话对应索引设置为1,其余设置为0。
reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
kps_mask = np.zeros((self.max_objs, self.num_joints * 2), dtype=np.uint8)
#关节点的误差
hp_offset = np.zeros((self.max_objs * num_joints, 2), dtype=np.float32)
# 关节点的位置
hp_ind = np.zeros((self.max_objs * num_joints), dtype=np.int64)
#关节点位置是否存在
hp_mask = np.zeros((self.max_objs * num_joints), dtype=np.int64)

@xingyizhou
Copy link
Owner

I didn't uderstand the first question. The rest are correct as far as I can see.

@cugblizz
Copy link

Thank you for sharing this code. I would like to ask you more about_ Don't directly regress 17 corners in post as in target detection?
Another one is about multi_ The understanding of some parameters in post is right. Please correct them:
#中心点的热力图
hm = np.zeros((self.num_classes, output_res, output_res), dtype=np.float32)
#关节点的热力图
hm_hp = np.zeros((num_joints, output_res, output_res), dtype=np.float32)
#不同物体中心是否在一起的设置(代码中没用到)
dense_kps = np.zeros((num_joints, 2, output_res, output_res),
dtype=np.float32)

不同物体中心是否存在设置(代码中没用到)

dense_kps_mask = np.zeros((num_joints, output_res, output_res),
dtype=np.float32)
#物体长宽的设置
wh = np.zeros((self.max_objs, 2), dtype=np.float32)
#关节点位置的设置
kps = np.zeros((self.max_objs, num_joints * 2), dtype=np.float32)
#中心点下采样的误差
reg = np.zeros((self.max_objs, 2), dtype=np.float32)
#中心点的位置
ind = np.zeros((self.max_objs), dtype=np.int64)

reg_mask回归的是有无目标,以掩码mask是否等1表示,返回self.max_objs个回归mask

这里相当于记载一张图片存在哪些目标,有的话对应索引设置为1,其余设置为0。

reg_mask = np.zeros((self.max_objs), dtype=np.uint8)
kps_mask = np.zeros((self.max_objs, self.num_joints * 2), dtype=np.uint8)
#关节点的误差
hp_offset = np.zeros((self.max_objs * num_joints, 2), dtype=np.float32)

关节点的位置

hp_ind = np.zeros((self.max_objs * num_joints), dtype=np.int64)
#关节点位置是否存在
hp_mask = np.zeros((self.max_objs * num_joints), dtype=np.int64)

hey,I am also interested in human pose estimation.Is it convenient for you to share your understanding of the parameters?Thanks in advance!!!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants