-
Notifications
You must be signed in to change notification settings - Fork 1
/
stripes_solver.h
129 lines (102 loc) · 3.27 KB
/
stripes_solver.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#ifndef STRIPES_SOLVER_H
#define STRIPES_SOLVER_H
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <numeric>
#include <vector>
#include <deque>
#include <string>
#include <omp.h>
#include <map>
#include <random>
#include <tesseract/baseapi.h>
#include <opencv2/opencv.hpp>
#include <ocr_extractor.h>
#include <fragment.h>
#include <path_manager.h>
#include <utils.h>
#include <KM.h>
#include <compatibility_net.h>
#include <stripe_pair.h>
using namespace std;
class StripesSolver {
public:
enum Metric {
PIXEL,
CHAR,
WORD,
COMP_EVA
};
enum Composition {
GREEDY,
GCOM,
GREEDY_GCOM,
GT,
USER,
};
const string puzzle_folder;
const int stripes_n;
vector<int> gt_order;
vector<cv::Mat> stripes;
vector<int> composition_order;
cv::Mat composition_img;
cv::Mat composition_img_seams;
double composition_score;
// Path
PathManager path_manager;
StripesSolver(const string & _puzzle_foler, int _stripes_n, int _samples_n, bool _real_flag);
~StripesSolver();
void m_metric();
bool reassemble(Metric _metric_mode,
Composition _composition_mode,
const string & case_name,
bool benchmark_flag);
cv::Mat compose_img(const vector<int> & composition_order,
bool shift_flag=false,
vector<int> * sol_x=nullptr);
cv::Mat add_seams( const cv::Mat & img,
const vector<int> & composition_order,
bool print_flag=true,
const vector<int> * sol_x=nullptr);
private:
Metric metric_mode;
Composition composition_mode;
bool real_flag;
vector<StripePair> stripe_pairs;
vector<StripePair> stripe_pairs_pixel;
void save_result(const string & case_name, bool benchmark_flag);
// Tesseract
const string tesseract_model_path {"data/tesseract_model/"};
// tesseract::TessBaseAPI * ocr;
const double conf_thres {75};
// Compatibility
const double filter_rate = 1;
const int symbols_n = 64;
const cv::Size cp_net_img_size {64, 64};
const string saved_model_folder = "data/saved_models/";
vector<char> symbols;
OcrExtractor ocr_ectractor;
CompatibilityNet cp_net;
Device device {kCPU};
// Metric word-path
string white_chars, black_chars;
int sols_n {10};
int candidate_len {10};
const int candidate_factor {5};
vector< vector<double> > pixel_graph;
vector< vector<double> > pixel_graph2;
double m_metric_char(const cv::Mat & piece0, const cv::Mat & piece1);
double m_metric_comp_eva(const cv::Mat & piece0, const cv::Mat & piece1);
void m_metric_word();
vector< vector<int> > reassemble_greedy(bool probability_flag=false);
void reassemble_GCOM();
void stochastic_search( vector<int> & sol, const vector< vector<StripePair> > & compose_next);
cv::Mat word_detection( const cv::Mat & img,
const vector<int> & sol,
vector<int> & sol_x);
void merge_single_sol(vector< vector<int> > & fragments);
void finetune_sols(const vector< vector<int> > & fragments);
};
static omp_lock_t omp_lock;
#endif