-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalc_scores.py
72 lines (58 loc) · 1.83 KB
/
calc_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import numpy as np
import matplotlib.pyplot as plt
folder_name = 'data/scores/'
scores_list = os.listdir(folder_name)
nums = [20, 30, 40, 60]
method_names = ['P-Greedy', 'P-GCOM', 'W-Greedy', 'W-GCOM', 'P-GA']
method_colors = ['teal', 'olive', 'aqua', 'orchid', 'orange']
order = [4, 0, 1, 2, 3]
# order = [0, 1, 2, 3]
adjust_flag = True
test_cnt = 0
test_n = len(nums)
method_n = len(method_names)
# method_n = 4
data = np.zeros(method_n * test_n)
our_data = None
for file_name in scores_list:
if (file_name == 'doc11.txt' or file_name == 'doc19.txt'):
continue
print(folder_name + file_name)
test_cnt += 1
score_file = open(folder_name + file_name, 'r')
for i in range(method_n):
x = score_file.readline()
scores = x.split()
if (len(scores) == 0):
continue
for j in range(test_n):
data[i * test_n + j] += float(scores[j])
if i == 3:
if our_data is None:
our_data = np.array(scores)
else:
our_data = np.vstack([our_data, np.array(scores)])
score_file.close()
data /= test_cnt
# print(data)
print(our_data)
for j in range(test_n):
x = np.array(our_data[:,j]).astype(np.float)
print(x.min(), x.max(), x.mean(), x.std())
# print(np.min(x), np.max(x))
x = list(range(len(nums)))
total_width = 0.8
width = total_width / method_n
for i in range(method_n):
order_idx = order[i]
if i > 0:
for j in range(test_n):
x[j] += width
plt.bar(x, data[order_idx * test_n: (order_idx+1) * test_n], width=width, label=method_names[order_idx], facecolor=method_colors[order_idx])
ticks = [str(x) for x in nums]
plt.xticks(np.arange(test_n), ticks)
plt.legend(loc='lower left', prop={'size': 8})
plt.xlabel('Stripes Number')
plt.ylabel('Accuracy')
plt.show()