-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_xyz.py
368 lines (308 loc) · 15.6 KB
/
train_xyz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
'''
Multi-GPU training.
Near linear scale acceleration for multi-gpus on a single machine.
Will use H5 dataset in default. If using normal, will shift to the normal dataset.
'''
import argparse
import math
from datetime import datetime
import h5py
import numpy as np
import tensorflow as tf
import socket
import importlib
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import provider
import tf_util
# import modelnet_dataset
# import modelnet_h5_dataset
parser = argparse.ArgumentParser()
parser.add_argument('--num_gpus', type=int, default=2, help='How many gpus to use [default: 1]')
parser.add_argument('--model', default='spidercnn_cls_xyz', help='Model name [default: model]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=251, help='Epoch to run [default: 251]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
# parser.add_argument('--normal', action='store_true', help='Whether to use normal information')
# parser.add_argument('--normal', type=bool, default=True, help='Whether to use normal information')
FLAGS = parser.parse_args()
EPOCH_CNT = 0
NUM_GPUS = FLAGS.num_gpus
BATCH_SIZE = FLAGS.batch_size
assert(BATCH_SIZE % NUM_GPUS == 0)
DEVICE_BATCH_SIZE = BATCH_SIZE / NUM_GPUS
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(ROOT_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
HOSTNAME = socket.gethostname()
NUM_CLASSES = 40
# Shapenet official train/test split
# if FLAGS.normal:
# assert(NUM_POINT<=10000)
# DATA_PATH = os.path.join(ROOT_DIR, 'data/modelnet40_normal_resampled')
# TRAIN_DATASET = modelnet_dataset.ModelNetDataset(root=DATA_PATH, npoints=NUM_POINT, split='train', normal_channel=FLAGS.normal, batch_size=BATCH_SIZE)
# TEST_DATASET = modelnet_dataset.ModelNetDataset(root=DATA_PATH, npoints=NUM_POINT, split='test', normal_channel=FLAGS.normal, batch_size=BATCH_SIZE)
# else:
# assert(NUM_POINT<=2048)
# TRAIN_DATASET = modelnet_h5_dataset.ModelNetH5Dataset(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'), batch_size=BATCH_SIZE, npoints=NUM_POINT, shuffle=True)
# TEST_DATASET = modelnet_h5_dataset.ModelNetH5Dataset(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'), batch_size=BATCH_SIZE, npoints=NUM_POINT, shuffle=False)
TRAIN_FILES = provider.getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'))
TEST_FILES = provider.getDataFiles(\
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'))
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
From tensorflow tutorial: cifar10/cifar10_multi_gpu_train.py
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
#for g, _ in grad_and_vars:
for g, v in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/cpu:0'):
pointclouds_pl = tf.placeholder(tf.float32, shape=(BATCH_SIZE, NUM_POINT, 3))
labels_pl = tf.placeholder(tf.int32, shape=(BATCH_SIZE))
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter
# for you every time it trains.
batch = tf.get_variable('batch', [],
initializer=tf.constant_initializer(0), trainable=False)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
# Set learning rate and optimizer
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
# -------------------------------------------
# Get model and loss on multiple GPU devices
# -------------------------------------------
# Allocating variables on CPU first will greatly accelerate multi-gpu training.
# Ref: https://github.com/kuza55/keras-extras/issues/21
MODEL.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay, num_classes=NUM_CLASSES)
tower_grads = []
pred_gpu = []
total_loss_gpu = []
for i in range(NUM_GPUS):
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
with tf.device('/gpu:%d'%(i)), tf.name_scope('gpu_%d'%(i)) as scope:
# Evenly split input data to each GPU
pc_batch = tf.slice(pointclouds_pl,
[i*DEVICE_BATCH_SIZE,0,0], [DEVICE_BATCH_SIZE,-1,-1])
label_batch = tf.slice(labels_pl,
[i*DEVICE_BATCH_SIZE], [DEVICE_BATCH_SIZE])
pred = MODEL.get_model(pc_batch,
is_training=is_training_pl, bn_decay=bn_decay, num_classes=NUM_CLASSES)
MODEL.get_loss(pred, label_batch)
losses = tf.get_collection('losses', scope)
total_loss = tf.add_n(losses, name='total_loss')
for l in losses + [total_loss]:
tf.summary.scalar(l.op.name, l)
grads = optimizer.compute_gradients(total_loss)
tower_grads.append(grads)
pred_gpu.append(pred)
total_loss_gpu.append(total_loss)
# Merge pred and losses from multiple GPUs
pred = tf.concat(pred_gpu, 0)
total_loss = tf.reduce_mean(total_loss_gpu)
# Get training operator
grads = average_gradients(tower_grads)
train_op = optimizer.apply_gradients(grads, global_step=batch)
correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy', accuracy)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'), sess.graph)
# Init variables
init = tf.global_variables_initializer()
sess.run(init)
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': total_loss,
'train_op': train_op,
'merged': merged,
'step': batch}
eval_acc_max = 0
maxAcc_epoch = 0
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
eval_acc = eval_one_epoch(sess, ops, test_writer)
# Save the variables to disk.
if eval_acc > eval_acc_max:
max_save_path = saver.save(sess, os.path.join(LOG_DIR, 'model_max.ckpt'))
maxAcc_epoch = epoch
eval_acc_max = eval_acc
log_string("Model saved in file: %s" % max_save_path)
if epoch == (MAX_EPOCH-1):
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
log_string("Max acc model saved in epoch: %d" % maxAcc_epoch)
log_string("Max acc is: %f" % eval_acc_max)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train files
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
for fn in range(len(TRAIN_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label, _ = provider.loadDataFile_with_normal(TRAIN_FILES[train_file_idxs[fn]])
current_data = current_data[:,0:NUM_POINT,:]
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Augment batched point clouds by rotation and jittering
rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :])
jittered_data = provider.jitter_point_cloud(rotated_data)
feed_dict = {ops['pointclouds_pl']: jittered_data,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training,}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label, _ = provider.loadDataFile_with_normal(TEST_FILES[fn])
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
feed_dict = {ops['pointclouds_pl']: current_data[start_idx:end_idx, :, :],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val*BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
return (total_correct / float(total_seen))
if __name__ == "__main__":
log_string('pid: %s'%(str(os.getpid())))
train()
LOG_FOUT.close()