-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
70 lines (62 loc) · 2.84 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import utils.misc as misc
import torch.nn.functional as F
def compute_iou(preds, target):
assert target.shape[1] == 1, 'only support one mask per image now'
if(preds.shape[2]!=target.shape[2] or preds.shape[3]!=target.shape[3]):
postprocess_preds = F.interpolate(preds, size=target.size()[2:], mode='bilinear', align_corners=False)
else:
postprocess_preds = preds
iou = 0
for i in range(0,len(preds)): # len(preds) == 1
iou = iou + misc.mask_iou(postprocess_preds[i],target[i])
# print the number of 255 in target
# print('target:', target[i].shape, (target[i]/255).sum())
# print('compute_iou:', iou)
# print('iou, len(preds):', iou, len(preds))
# print('return:', iou / len(preds))
return iou / len(preds)
def compute_boundary_iou(preds, target):
assert target.shape[1] == 1, 'only support one mask per image now'
if(preds.shape[2]!=target.shape[2] or preds.shape[3]!=target.shape[3]):
postprocess_preds = F.interpolate(preds, size=target.size()[2:], mode='bilinear', align_corners=False)
else:
postprocess_preds = preds
iou = 0
for i in range(0,len(preds)):
iou = iou + misc.boundary_iou(target[i],postprocess_preds[i])
return iou / len(preds)
def show_anns(masks, input_point, input_box, input_label, filename, image, ious, boundary_ious):
if len(masks) == 0:
return
for i, (mask, iou, biou) in enumerate(zip(masks, ious, boundary_ious)):
plt.figure(figsize=(10,10))
plt.imshow(image)
show_mask(mask, plt.gca())
if input_box is not None:
show_box(input_box, plt.gca())
if (input_point is not None) and (input_label is not None):
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.savefig(filename+'_'+str(i)+'.png',bbox_inches='tight',pad_inches=-0.1)
plt.close()
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))