-
Notifications
You must be signed in to change notification settings - Fork 615
/
3_transform.py
136 lines (117 loc) · 4.91 KB
/
3_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
''' Examples of transformation & camera model.
'''
import os, sys
import numpy as np
import math
import scipy.io as sio
from skimage import io
from time import time
import subprocess
sys.path.append('..')
import face3d
from face3d import mesh
from face3d import mesh_cython
def transform_test(vertices, obj, camera, h = 256, w = 256):
'''
Args:
obj: dict contains obj transform paras
camera: dict contains camera paras
'''
R = mesh.transform.angle2matrix(obj['angles'])
transformed_vertices = mesh.transform.similarity_transform(vertices, obj['s'], R, obj['t'])
if camera['proj_type'] == 'orthographic':
projected_vertices = transformed_vertices
image_vertices = mesh.transform.to_image(projected_vertices, h, w)
else:
## world space to camera space. (Look at camera.)
projected_vertices = mesh.transform.lookat_camera(transformed_vertices, camera['eye'], camera['at'], camera['up'])
## camera space to image space. (Projection) if orth project, ignore
projected_vertices = mesh.transform.perspective_project(projected_vertices, camera['fovy'], near = camera['near'], far = camera['far'])
## to image coords(position in image)
image_vertices = mesh.transform.to_image(projected_vertices, h, w, True)
rendering = mesh_cython.render.render_colors(image_vertices, triangles, colors, h, w)
rendering = np.minimum((np.maximum(rendering, 0)), 1)
return rendering
# --------- load mesh data
C = sio.loadmat('Data/example1.mat')
vertices = C['vertices'];
global colors
global triangles
colors = C['colors']; triangles = C['triangles']
colors = colors/np.max(colors)
# move center to [0,0,0]
vertices = vertices - np.mean(vertices, 0)[np.newaxis, :]
# save folder
save_folder = 'results/transform'
if not os.path.exists(save_folder):
os.mkdir(save_folder)
options = '-delay 10 -loop 0 -layers optimize' # gif options. need ImageMagick installed.
# ---- start
obj = {}
camera = {}
### face in reality: ~18cm height/width. set 180 = 18cm. image size: 256 x 256
scale_init = 180/(np.max(vertices[:,1]) - np.min(vertices[:,1])) # scale face model to real size
## 1. fix camera model(stadard camera& orth proj). change obj position.
camera['proj_type'] = 'orthographic'
# scale
for factor in np.arange(0.5, 1.2, 0.1):
obj['s'] = scale_init*factor
obj['angles'] = [0, 0, 0]
obj['t'] = [0, 0, 0]
image = transform_test(vertices, obj, camera)
io.imsave('{}/1_1_{:.2f}.jpg'.format(save_folder, factor), image)
# angles
for i in range(3):
for angle in np.arange(-50, 51, 10):
obj['s'] = scale_init
obj['angles'] = [0, 0, 0]
obj['angles'][i] = angle
obj['t'] = [0, 0, 0]
image = transform_test(vertices, obj, camera)
io.imsave('{}/1_2_{}_{}.jpg'.format(save_folder, i, angle), image)
subprocess.call('convert {} {}/1_*.jpg {}'.format(options, save_folder, save_folder + '/obj.gif'), shell=True)
## 2. fix obj position(center=[0,0,0], front pose). change camera position&direction, using perspective proj(fovy fixed)
obj['s'] = scale_init
obj['angles'] = [0, 0, 0]
obj['t'] = [0, 0, 0]
# obj: center at [0,0,0]. size:200
camera['proj_type'] = 'perspective'
camera['at'] = [0, 0, 0]
camera['near'] = 1000
camera['far'] = -100
# eye position
camera['fovy'] = 30
camera['up'] = [0, 1, 0] #
# z-axis: eye from far to near, looking at the center of face
for p in np.arange(500, 250-1, -40): # 0.5m->0.25m
camera['eye'] = [0, 0, p] # stay in front of face
image = transform_test(vertices, obj, camera)
io.imsave('{}/2_eye_1_{}.jpg'.format(save_folder, 1000-p), image)
# y-axis: eye from down to up, looking at the center of face
for p in np.arange(-300, 301, 60): # up 0.3m -> down 0.3m
camera['eye'] = [0, p, 250] # stay 0.25m far
image = transform_test(vertices, obj, camera)
io.imsave('{}/2_eye_2_{}.jpg'.format(save_folder, p/6), image)
# x-axis: eye from left to right, looking at the center of face
for p in np.arange(-300, 301, 60): # left 0.3m -> right 0.3m
camera['eye'] = [p, 0, 250] # stay 0.25m far
image = transform_test(vertices, obj, camera)
io.imsave('{}/2_eye_3_{}.jpg'.format(save_folder, -p/6), image)
# up direction
camera['eye'] = [0, 0, 250] # stay in front
for p in np.arange(-50, 51, 10):
world_up = np.array([0, 1, 0]) # default direction
z = np.deg2rad(p)
Rz=np.array([[math.cos(z), -math.sin(z), 0],
[math.sin(z), math.cos(z), 0],
[ 0, 0, 1]])
up = Rz.dot(world_up[:, np.newaxis]) # rotate up direction
# note that: rotating up direction is opposite to rotating obj
# just imagine: rotating camera 20 degree clockwise, is equal to keeping camera fixed and rotating obj 20 degree anticlockwise.
camera['up'] = np.squeeze(up)
image = transform_test(vertices, obj, camera)
io.imsave('{}/2_eye_4_{}.jpg'.format(save_folder, -p), image)
subprocess.call('convert {} {}/2_*.jpg {}'.format(options, save_folder, save_folder + '/camera.gif'), shell=True)
# -- delete jpg files
print('gifs have been generated, now delete jpgs')
subprocess.call('rm {}/*.jpg'.format(save_folder), shell=True)