-
Notifications
You must be signed in to change notification settings - Fork 614
/
8_generate_posmap_300WLP.py
111 lines (94 loc) · 4.28 KB
/
8_generate_posmap_300WLP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
'''
Generate uv position map of 300W_LP.
'''
import os, sys
import numpy as np
import scipy.io as sio
from skimage import io
import skimage.transform
from time import time
import matplotlib.pyplot as plt
sys.path.append('..')
import face3d
from face3d import mesh
from face3d import mesh_cython
from face3d.morphable_model import MorphabelModel
def process_uv(uv_coords, uv_h = 256, uv_w = 256):
uv_coords[:,0] = uv_coords[:,0]*(uv_h - 1)
uv_coords[:,1] = uv_coords[:,1]*(uv_h - 1)
uv_coords[:,1] = uv_h - uv_coords[:,1] - 1
uv_coords = np.hstack((uv_coords, np.zeros((uv_coords.shape[0], 1)))) # add z
return uv_coords
def run_posmap_300W_LP(image_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256):
# 1. load image and fitted parameters
image_name = image_path.strip().split('/')[-1]
image = io.imread(image_path)/255.
[h, w, c] = image.shape
mat_path = image_path.replace('jpg', 'mat')
info = sio.loadmat(mat_path)
pose_para = info['Pose_Para'].T.astype(np.float32)
shape_para = info['Shape_Para'].astype(np.float32)
exp_para = info['Exp_Para'].astype(np.float32)
# 2. generate mesh
# load bfm
bfm = MorphabelModel('Data/BFM/Out/BFM.mat')
# generate shape
vertices = bfm.generate_vertices(shape_para, exp_para)
# transform mesh
s = pose_para[-1, 0]
angles = pose_para[:3, 0]
t = pose_para[3:6, 0]
transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t)
projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA
image_vertices = projected_vertices.copy()
image_vertices[:,1] = h - image_vertices[:,1] - 1
# 3. crop image with key points
kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32)
left = np.min(kpt[:, 0])
right = np.max(kpt[:, 0])
top = np.min(kpt[:, 1])
bottom = np.max(kpt[:, 1])
center = np.array([right - (right - left) / 2.0,
bottom - (bottom - top) / 2.0])
old_size = (right - left + bottom - top)/2
size = int(old_size*1.5)
# random pertube
marg = old_size*0.1
t_x = np.random.rand()*marg*2 - marg
t_y = np.random.rand()*marg*2 - marg
center[0] = center[0]+t_x; center[1] = center[1]+t_y
size = size*(np.random.rand()*0.2 + 0.9)
src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]])
DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]])
tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS)
cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w))
# transform face position(image vertices) along with 2d facial image
position = image_vertices.copy()
position[:, 2] = 1
position = np.dot(position, tform.params.T)
position[:, 2] = projected_vertices[:, 2]*tform.params[0, 0] # scale z
position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z
# 4. uv position map: render position to uv space
uv_position_map = mesh_cython.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3)
# 5. save files
io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image))
np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map)
io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show
# --verify
# import cv2
# uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0))
# io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))
if __name__ == '__main__':
save_folder = 'results/posmap_300WLP'
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# set para
uv_h = uv_w = 256
image_h = image_w = 256
# load uv coords
global uv_coords
uv_coords = face3d.morphable_model.load.load_uv_coords('Data/BFM/Out/BFM_UV.mat') #
uv_coords = process_uv(uv_coords, uv_h, uv_w)
# run
image_path = 'Data/IBUG_image_008_1_0.jpg'
run_posmap_300W_LP(image_path, save_folder)