-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcompute_metrics.py
executable file
·56 lines (48 loc) · 1.65 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
from skimage.metrics import structural_similarity as comp_ssim
import lpips
import glob
import os
import imageio
import torch
import math
def calc_ssim( hr, sr, align=False):
sr = np.transpose(sr[0].cpu().numpy(), (1,2,0))
hr = np.transpose(hr[0].cpu().numpy(), (1,2,0))
return comp_ssim(sr/255., hr/255., multichannel=True)
def calc_psnr(hr, sr, scale=1, rgb_range=255, align=False, dataset=None):
if hr.nelement() == 1: return 0
diff = (sr - hr) / rgb_range
mse = diff.pow(2).mean()
return -10 * math.log10(mse)
def calc_lpips(hr, sr, loss_fn):
sr = (sr / 255.) * 2- 1
hr = (hr / 255.) * 2- 1
d = loss_fn(sr, hr)[0,0,0,0]
return d
def np2Tensor(*args):
def _np2Tensor(img):
np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1)))
np_transpose = np.expand_dims(np_transpose, 0)
tensor = torch.from_numpy(np_transpose).float()
return tensor
return [_np2Tensor(a) for a in args]
def Mean(lst):
return sum(lst) / len(lst)
def compute_all(root):
all_file = glob.glob(os.path.join(root, 'target', '*GT.png'))
psnr = []
ssim = []
lpips_score = []
loss_fn_alex = lpips.LPIPS(net='alex')
for file_name in all_file:
print(file_name)
hr = imageio.imread(file_name)
sr = imageio.imread(file_name.replace('/target/','/transfill/').replace('GT','Final'))
hr, sr = np2Tensor(hr, sr)
psnr.append(calc_psnr(hr, sr))
ssim.append(calc_ssim(hr, sr))
lpips_score.append(calc_lpips(hr, sr, loss_fn_alex))
return Mean(psnr), Mean(ssim), Mean(lpips_score)
root = 'data/Small_Set'
print(compute_all(root))