Skip to content

Latest commit

 

History

History
29 lines (17 loc) · 675 Bytes

README.md

File metadata and controls

29 lines (17 loc) · 675 Bytes

Installation

If your CUDA toolkit is older than 11, then you will need to install CUB as follows: conda install -c bottler nvidiacub

Since CUDA 11, CUB is shipped with the toolkit. To install the main library, simply run pip install . in the root directory.

Voxel Optimization

See opt/opt.py

./launch.sh <exp_name> <GPU_id> <data_dir>

NOTE: can no longer use sh

Evaluation

See opt/render_imgs.py

python render_imgs.py <CHECKPOINT.npz> <data_dir>

Automatic hypertuning

See opt/autotune.py. Configs in opt/tasks/*.json

Automatic eval: python autotune.py -g '<space delimited GPU ids>' tasks/eval.json. Configs in opt/tasks/*.json