-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_process.py
85 lines (77 loc) · 5.09 KB
/
main_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# -*- coding: utf-8 -*-
"""
输出结果为:
CCFTestResultFixValidData_release.csv
"""
import argparse
import sys
import os
import time
sys.path.append('./')
from cut_twist_process import cut_twist_join # 预处理,将身份证正反面从原始图片切分出来并旋转
from recognize_process.tools import mytest_crnn, test_crnn_jmz
from watermask_remover_and_split_data.watermask_process import WatermarkRemover
from data_correction_and_generate_csv_file.generate_test_csv_file import generate_csv
def recoginze_init_args():
"""
初始化识别过程需要的参数
:return: None
"""
parser = argparse.ArgumentParser()
parser.add_argument('-rc_w', '--recognize_weights_path', type=str,
help='Path to the pre-trained weights to use',
default='./recognize_process/model_save/recognize_model')
parser.add_argument('-rc_c', '--recognize_char_dict_path', type=str,
help='Directory where character dictionaries for the dataset were stored',
default='./recognize_process/char_map/char_map.json')
parser.add_argument('-rc_i', '--recognize_image_path', type=str,
help='Path to the image to be tested',
default='./recognize_process/test_imgs/')
parser.add_argument('-rc_t', '--recognize_txt_path', type=str,
help='Whether to display images',
default='./recognize_process/image_list.txt')
parser.add_argument("--no_gen_data_chu", action="store_true", help="generate chusai new test data")
parser.add_argument("--no_gen_data_fu", action="store_true", help="generate fusai new test data")
parser.add_argument("--no_preprocessed", action="store_true", help="if preprocessed test data")
parser.add_argument("--no_gan_test", action="store_true", help="test data with gan model")
parser.add_argument("--no_gan_test_rematch", action="store_true", help="test rematch data with gan model")
parser.add_argument("--no_rec_img", action="store_true", help="if recover img")
parser.add_argument("--no_rec_img_rematch", action="store_true", help="if recover img")
parser.add_argument("--no_test_data", action="store_true", help="if generate test data")
parser.add_argument("--no_fix_img", action="store_true", help="if fix img of address and unit")
parser.add_argument("--no_gen_txts", action="store_true", help="if txt files for recognize")
parser.add_argument("--debug", action="store_true", help="if debug")
parser.add_argument("--gan_chu", default="chusai_watermask_remover_model", help="model name of chusai")
parser.add_argument("--gan_fu", default="fusai_watermask_remover_model", help="model name of fusai")
parser.add_argument("--pool_num", default=-1, help="the number of threads for process data")
parser.add_argument("--test_data_dir", required=True, help="the dir of test data")
parser.add_argument("--test_experiment_name", required=True, help="the dir of test data")
parser.add_argument("--gan_ids", required=True, help="-1 for cpu, 0 or 0,1.. for GPU")
return parser.parse_args()
if __name__ == '__main__':
args = recoginze_init_args()
origin_img_path = args.test_data_dir
time_log = time.strftime("%y_%m_%d_%H_%M_%S")
header_dir = os.path.join("./data_temp", args.test_experiment_name + "_" + time_log)
if not os.path.exists(header_dir):
os.makedirs(header_dir)
cut_twisted_save_path = os.path.join(header_dir, 'data_cut_twist') # 切分、旋转后数据保存路径
cut_twist_template_names = ['./cut_twist_process/template/fan_blurred_fan.jpg', # 0 反面反
'./cut_twist_process/template/fan_blurred_zheng.jpg', # 1 反面正
'./cut_twist_process/template/zheng_blurred_fan.jpg', # 2 正面反
'./cut_twist_process/template/zheng_blurred_zheng.jpg', # 3 正面正
'./cut_twist_process/template/zheng_new.jpg', # 4 新水印正面
'./cut_twist_process/template/fan_new.jpg' # 5 新水印反面
] # 模板图片路径
# 切分身份证
cut_twist_join.process_cut_twist_imgs(img_path=origin_img_path, template_names=cut_twist_template_names,
save_path=cut_twisted_save_path, norm_parm=[0.95, 0.95, 0.7, 0.7])
# 去水印和对图片进行切割和处理
watermask_handler = WatermarkRemover(args, header_dir, cut_twisted_save_path)
watermask_handler.watermask_remover_run()
recognize_image_path = os.path.join(header_dir, "test_data_preprocessed")
recognize_txt_path = os.path.join(header_dir, "test_data_txts")
test_crnn_jmz.recognize_jmz(image_path=recognize_image_path, weights_path=args.recognize_weights_path,
char_dict_path=args.recognize_char_dict_path, txt_file_path=recognize_txt_path)
origin_watermask_removed_img_path = os.path.join(header_dir, "recover_image_fu_dir")
generate_csv(origin_watermask_removed_img_path, recognize_txt_path, "./")