forked from fqnchina/ImageSmoothing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_background-smooth.lua
376 lines (298 loc) · 11.3 KB
/
train_background-smooth.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
require 'nn'
require 'optim'
require 'torch'
require 'cutorch'
require 'cunn'
require 'image'
require 'sys'
require 'cudnn'
require 'nngraph'
cudnn.fastest = true
cudnn.benchmark = true
local function subnet1()
sub = nn.Sequential()
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 1, 1, 1, 1))
sub:add(cudnn.SpatialBatchNormalization(64))
sub:add(cudnn.ReLU(true))
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 1, 1, 1, 1))
sub:add(cudnn.SpatialBatchNormalization(64))
cont = nn.ConcatTable()
cont:add(sub)
cont:add(nn.Identity())
return cont
end
local function subnet2()
sub = nn.Sequential()
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 2, 2, 2, 2))
sub:add(cudnn.SpatialBatchNormalization(64))
sub:add(cudnn.ReLU(true))
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 2, 2, 2, 2))
sub:add(cudnn.SpatialBatchNormalization(64))
cont = nn.ConcatTable()
cont:add(sub)
cont:add(nn.Identity())
return cont
end
local function subnet4()
sub = nn.Sequential()
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 4, 4, 4, 4))
sub:add(cudnn.SpatialBatchNormalization(64))
sub:add(cudnn.ReLU(true))
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 4, 4, 4, 4))
sub:add(cudnn.SpatialBatchNormalization(64))
cont = nn.ConcatTable()
cont:add(sub)
cont:add(nn.Identity())
return cont
end
local function subnet8()
sub = nn.Sequential()
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 8, 8, 8, 8))
sub:add(cudnn.SpatialBatchNormalization(64))
sub:add(cudnn.ReLU(true))
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 8, 8, 8, 8))
sub:add(cudnn.SpatialBatchNormalization(64))
cont = nn.ConcatTable()
cont:add(sub)
cont:add(nn.Identity())
return cont
end
local function subnet16()
sub = nn.Sequential()
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 16, 16, 16, 16))
sub:add(cudnn.SpatialBatchNormalization(64))
sub:add(cudnn.ReLU(true))
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 16, 16, 16, 16))
sub:add(cudnn.SpatialBatchNormalization(64))
cont = nn.ConcatTable()
cont:add(sub)
cont:add(nn.Identity())
return cont
end
local function subnet32()
sub = nn.Sequential()
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 32, 32, 32, 32))
sub:add(cudnn.SpatialBatchNormalization(64))
sub:add(cudnn.ReLU(true))
sub:add(cudnn.SpatialDilatedConvolution(64, 64, 3, 3, 1, 1, 32, 32, 32, 32))
sub:add(cudnn.SpatialBatchNormalization(64))
cont = nn.ConcatTable()
cont:add(sub)
cont:add(nn.Identity())
return cont
end
h0 = nn.Identity()()
h0_origin = nn.Identity()()
h1 = h0 - cudnn.SpatialConvolution(3, 64, 3, 3, 1, 1, 1, 1) - cudnn.SpatialBatchNormalization(64) - cudnn.ReLU(true)
h2 = h1 - cudnn.SpatialConvolution(64, 64, 3, 3, 1, 1, 1, 1) - cudnn.SpatialBatchNormalization(64) - cudnn.ReLU(true)
h3 = h2 - cudnn.SpatialConvolution(64, 64, 3, 3, 2, 2, 1, 1) - cudnn.SpatialBatchNormalization(64) - cudnn.ReLU(true)
sub1 = h3 - subnet2() - nn.CAddTable() - cudnn.ReLU(true)
sub2 = sub1 - subnet2() - nn.CAddTable() - cudnn.ReLU(true)
sub3 = sub2 - subnet4() - nn.CAddTable() - cudnn.ReLU(true)
sub4 = sub3 - subnet4() - nn.CAddTable() - cudnn.ReLU(true)
sub5 = sub4 - subnet8() - nn.CAddTable() - cudnn.ReLU(true)
sub6 = sub5 - subnet8() - nn.CAddTable() - cudnn.ReLU(true)
sub7 = sub6 - subnet16() - nn.CAddTable() - cudnn.ReLU(true)
sub8 = sub7 - subnet16() - nn.CAddTable() - cudnn.ReLU(true)
sub9 = sub8 - subnet1() - nn.CAddTable() - cudnn.ReLU(true)
sub10 = sub9 - subnet1() - nn.CAddTable() - cudnn.ReLU(true)
h4 = sub10 - cudnn.SpatialFullConvolution(64, 64, 4, 4, 2, 2, 1, 1) - cudnn.SpatialBatchNormalization(64) - cudnn.ReLU(true)
h5 = h4 - cudnn.SpatialConvolution(64, 64, 3, 3, 1, 1, 1, 1) - cudnn.SpatialBatchNormalization(64) - cudnn.ReLU(true)
h6 = h5 - cudnn.SpatialConvolution(64, 3, 1, 1)
h7 = {h6,h0_origin} - nn.CAddTable()
h7_edge = h7 - nn.EdgeComputation()
h7_grad = {h7,h7_edge} - nn.JoinTable(2)
model = nn.gModule({h0,h0_origin},{h7,h7_grad})
model = model:cuda()
criterion = nn.ParallelCriterion():add(nn.MSECriterion(),1):add(nn.SmoothAndEdgeTerm(0.1,7,2,0.8,1,0.1,5,0,0),1)
criterion = criterion:cuda()
model_computeEdge = nn.EdgeComputation()
for i,module in ipairs(model:listModules()) do
local m = module
if m.__typename == 'cudnn.SpatialConvolution' or m.__typename == 'cudnn.SpatialFullConvolution' then
local stdv = math.sqrt(12/(m.nInputPlane*m.kH*m.kW + m.nOutputPlane*m.kH*m.kW))
m.weight:uniform(-stdv, stdv)
m.bias:zero()
end
if m.__typename == 'cudnn.SpatialBatchNormalization' then
m.weight:fill(1)
m.bias:zero()
end
end
postfix = 'smooth_background-smooth'
max_iters = 30
batch_size = 1
model:training()
collectgarbage()
parameters, gradParameters = model:getParameters()
sgd_params = {
learningRate = 1e-2,
learningRateDecay = 1e-8,
weightDecay = 0.0005,
momentum = 0.9,
dampening = 0,
nesterov = true
}
adam_params = {
learningRate = 0.01,
weightDecay = 0.0005,
beta1 = 0.9,
beta2 = 0.999
}
rmsprop_params = {
learningRate = 1e-2,
weightDecay = 0.0005,
alpha = 0.9
}
savePath = './smoothing/'
local file = './smoothing_codes/train_background-smooth.lua'
local f = io.open(file, "rb")
local line = f:read("*all")
f:close()
print('*******************train file*******************')
print(line)
print('*******************train file*******************')
local file = './data/VOC2012_train.txt'
local trainSet = {}
local f = io.open(file, "rb")
while true do
local line = f:read()
if line == nil then break end
table.insert(trainSet, line)
end
f:close()
local trainsetSize = #trainSet
local file = './data/VOC2012_test.txt'
local testSet = {}
local f = io.open(file, "rb")
while true do
local line = f:read()
if line == nil then break end
table.insert(testSet, line)
end
f:close()
local testsetSize = #testSet
local iter = 0
local epoch_judge = false
step = function(batch_size)
local testCount = 1
local current_loss = 0
local current_testloss = 0
local count = 0
local testcount = 0
batch_size = batch_size or 4
local order = torch.randperm(trainsetSize)
for t = 1,trainsetSize,batch_size do
iter = iter + 1
local size = math.min(t + batch_size, trainsetSize + 1) - t
local feval = function(x_new)
-- reset data
if parameters ~= x_new then parameters:copy(x_new) end
gradParameters:zero()
local loss = 0
for i = 1,size do
local inputFile = trainSet[order[t+i-1]]
local inputEdgeFile = string.gsub(inputFile,'VOC2012_input','VOC2012_input_edge_default')
inputEdgeFile = string.gsub(inputEdgeFile,'%.png','-edge.png')
local inputSaliency = string.gsub(inputFile,'VOC2012_input','VOC2012_input_saliency')
local tempInput = image.load(inputFile)
local height = tempInput:size(2)
local width = tempInput:size(3)
local input = torch.CudaTensor(1, 3, height, width)
local label_all = torch.CudaTensor(1, 5, height, width):fill(0)
input[1] = tempInput
local input_origin = input:clone()
input = input * 255
label = input:clone()
local inputs = {input - 115,input}
local input_edge = model_computeEdge:forward(input)
local saliency = image.load(inputSaliency)
local edgeLabel = image.load(inputEdgeFile)
saliency = torch.gt(saliency,0.5)
saliency = saliency:cuda()
edgeLabel = edgeLabel:cuda()
label_all[{{},{1},{},{}}] = image.rgb2y(tempInput)
label_all[{{},{2},{},{}}] = 0.492 * torch.csub(input_origin[{{},{3},{},{}}],label_all[{{},{1},{},{}}])
label_all[{{},{3},{},{}}] = 0.877 * torch.csub(input_origin[{{},{1},{},{}}],label_all[{{},{1},{},{}}])
label_all[{{},{4},{},{}}] = torch.cmul(saliency,input_edge)
label_all[{{},{5},{},{}}] = torch.cmul(saliency,edgeLabel)
local labels = {label,label_all}
local pred = model:forward(inputs)
local tempLoss = criterion:forward(pred, labels)
loss = loss + tempLoss
local grad = criterion:backward(pred, labels)
model:backward(inputs, grad)
end
gradParameters:div(size)
loss = loss/size
return loss, gradParameters
end
if epoch_judge then
adam_params.learningRate = adam_params.learningRate*0.1
_, fs, adam_state_save = optim.adam_state(feval, parameters, adam_params, adam_params)
epoch_judge = false
else
_, fs, adam_state_save = optim.adam_state(feval, parameters, adam_params)
end
count = count + 1
current_loss = current_loss + fs[1]
print(string.format('Iter: %d Current loss: %4f', iter, fs[1]))
if iter % 20 == 0 then
local loss = 0
for i = 1,size do
local inputFile = testSet[testCount]
local inputEdgeFile = string.gsub(inputFile,'VOC2012_input','VOC2012_input_edge_default')
inputEdgeFile = string.gsub(inputEdgeFile,'%.png','-edge.png')
local inputSaliency = string.gsub(inputFile,'VOC2012_input','VOC2012_input_saliency')
local tempInput = image.load(inputFile)
local height = tempInput:size(2)
local width = tempInput:size(3)
local input = torch.CudaTensor(1, 3, height, width)
local label_all = torch.CudaTensor(1, 5, height, width):fill(0)
input[1] = tempInput
local input_origin = input:clone()
input = input * 255
label = input:clone()
local inputs = {input - 115,input}
local input_edge = model_computeEdge:forward(input)
local saliency = image.load(inputSaliency)
local edgeLabel = image.load(inputEdgeFile)
saliency = torch.gt(saliency,0.5)
saliency = saliency:cuda()
edgeLabel = edgeLabel:cuda()
label_all[{{},{1},{},{}}] = image.rgb2y(tempInput)
label_all[{{},{2},{},{}}] = 0.492 * torch.csub(input_origin[{{},{3},{},{}}],label_all[{{},{1},{},{}}])
label_all[{{},{3},{},{}}] = 0.877 * torch.csub(input_origin[{{},{1},{},{}}],label_all[{{},{1},{},{}}])
label_all[{{},{4},{},{}}] = torch.cmul(saliency,input_edge)
label_all[{{},{5},{},{}}] = torch.cmul(saliency,edgeLabel)
local labels = {label,label_all}
local pred = model:forward(inputs)
local tempLoss = criterion:forward(pred, labels)
loss = loss + tempLoss
testCount = testCount + 1
end
loss = loss/size
testcount = testcount + 1
current_testloss = current_testloss + loss
print(string.format('TestIter: %d Current loss: %4f', iter, loss))
end
end
return current_loss / count, current_testloss / testcount
end
netfiles = './smoothing/netfiles/'
timer = torch.Timer()
do
for i = 1,max_iters do
localTimer = torch.Timer()
local loss,testloss = step(batch_size,i)
print(string.format('Epoch: %d Current loss: %4f', i, loss))
print(string.format('Epoch: %d Current test loss: %4f', i, testloss))
local filename = string.format('%smodel_%s_%d.net',netfiles,postfix,i)
model:clearState()
torch.save(filename, model)
local filename = string.format('%sstate_%s_%d.t7',netfiles,postfix,i)
torch.save(filename, adam_state_save)
print('Time elapsed (epoch): ' .. localTimer:time().real/(3600) .. ' hours')
end
end
print('Time elapsed: ' .. timer:time().real/(3600*24) .. ' days')