Skip to content

ICCV 2019 (oral) RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution. PyTorch implementation

Notifications You must be signed in to change notification settings

zhaohengyuan1/RankSRGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RankSRGAN (under construction)

RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution

By Wenlong Zhang, Yihao Liu, Chao Dong, Yu Qiao


Dependencies

Codes

How to Test

  1. Clone this github repo.
git clone https://github.com/WenlongZhang0724/RankSRGAN.git
cd RankSRGAN
  1. Place your own low-resolution images in ./LR folder.
  2. Download pretrained models from Google Drive or Baidu Drive. Place the models in ./experiments/pretrained_models/. We provide three Ranker models and three RankSRGAN models (see model list).
  3. Run test. We provide RankSRGAN (NIQE, Ma, PI) model and you can config in the test.py.
python test.py -opt options/test/test_ranksrgan.json
  1. The results are in ./results folder.

How to Train

Train Ranker

  1. Download DIV2K and Flickr2K from Google Drive or Baidu Drive
  2. Generate rank dataset (coming soon)
  3. Run command:
python train.py -opt options/train/Ranker.json

Train RankSRGAN

We use a PSNR-oriented pretrained SR model to initialize the parameters for better quality.

  1. Prepare datasets, usually the DIV2K dataset.
  2. Prerapre the PSNR-oriented pretrained model. You can use the SRResNet_bicx4_in3nf64nb16.pth as the pretrained model that can be downloaded from Google Drive or Baidu Drive.
  3. Modify the configuration file options/train/RankSRGAN_NIQE.json
  4. Run command:
python train.py -opt options/train/RankSRGAN_NIQE.json

or

python train_PI.py -opt options/train/RankSRGAN_NIQE.json

Using the train.py can output the convergence curves with NIQE and PSNR; Using the train_PI.py can output the convergence curves with NIQE, Ma, PI and PSNR.

Acknowledgement

About

ICCV 2019 (oral) RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution. PyTorch implementation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 82.5%
  • MATLAB 17.0%
  • Other 0.5%