-
Notifications
You must be signed in to change notification settings - Fork 94
/
process.py
executable file
·133 lines (114 loc) · 4.14 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/usr/bin/env python3
"""Process a dataset with the trained neural network
Usage:
train.py [options] <yaml-config> <checkpoint> <image-dir> <output-dir>
train.py (-h | --help )
Arguments:
<yaml-config> Path to the yaml hyper-parameter file
<checkpoint> Path to the checkpoint
<image-dir> Path to the directory containing processed images
<output-dir> Path to the output directory
Options:
-h --help Show this screen.
-d --devices <devices> Comma seperated GPU devices [default: 0]
--plot Plot the result
"""
import os
import sys
import shlex
import pprint
import random
import os.path as osp
import threading
import subprocess
import numpy as np
import torch
import matplotlib as mpl
import skimage.io
import matplotlib.pyplot as plt
from docopt import docopt
import lcnn
from lcnn.utils import recursive_to
from lcnn.config import C, M
from lcnn.datasets import WireframeDataset, collate
from lcnn.models.line_vectorizer import LineVectorizer
from lcnn.models.multitask_learner import MultitaskHead, MultitaskLearner
def main():
args = docopt(__doc__)
config_file = args["<yaml-config>"] or "config/wireframe.yaml"
C.update(C.from_yaml(filename=config_file))
M.update(C.model)
pprint.pprint(C, indent=4)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
device_name = "cpu"
os.environ["CUDA_VISIBLE_DEVICES"] = args["--devices"]
if torch.cuda.is_available():
device_name = "cuda"
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed(0)
print("Let's use", torch.cuda.device_count(), "GPU(s)!")
else:
print("CUDA is not available")
device = torch.device(device_name)
if M.backbone == "stacked_hourglass":
model = lcnn.models.hg(
depth=M.depth,
head=lambda c_in, c_out: MultitaskHead(c_in, c_out),
num_stacks=M.num_stacks,
num_blocks=M.num_blocks,
num_classes=sum(sum(M.head_size, [])),
)
else:
raise NotImplementedError
checkpoint = torch.load(args["<checkpoint>"])
model = MultitaskLearner(model)
model = LineVectorizer(model)
model.load_state_dict(checkpoint["model_state_dict"])
model = model.to(device)
model.eval()
loader = torch.utils.data.DataLoader(
WireframeDataset(args["<image-dir>"], split="valid"),
shuffle=False,
batch_size=M.batch_size,
collate_fn=collate,
num_workers=C.io.num_workers,
pin_memory=True,
)
os.makedirs(args["<output-dir>"], exist_ok=True)
for batch_idx, (image, meta, target) in enumerate(loader):
with torch.no_grad():
input_dict = {
"image": recursive_to(image, device),
"meta": recursive_to(meta, device),
"target": recursive_to(target, device),
"do_evaluation": True,
}
H = model(input_dict)["heatmaps"]
for i in range(M.batch_size):
index = batch_idx * M.batch_size + i
np.savez(
osp.join(args["<output-dir>"], f"{index:06}.npz"),
**{k: v[i].cpu().numpy() for k, v in H.items()},
)
if not args["--plot"]:
continue
im = image[i].cpu().numpy().transpose(1, 2, 0)
im = im * M.image.stddev + M.image.mean
lines = H["lines"][i].cpu().numpy() * 4
scores = H["score"][i].cpu().numpy()
if len(lines) > 0 and not (lines[0] == 0).all():
for i, ((a, b), s) in enumerate(zip(lines, scores)):
if i > 0 and (lines[i] == lines[0]).all():
break
plt.plot([a[1], b[1]], [a[0], b[0]], c=c(s), linewidth=4)
plt.show()
cmap = plt.get_cmap("jet")
norm = mpl.colors.Normalize(vmin=0.4, vmax=1.0)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array([])
def c(x):
return sm.to_rgba(x)
if __name__ == "__main__":
main()