-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy patheval-sAP.py
executable file
·80 lines (61 loc) · 2.08 KB
/
eval-sAP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python3
"""Evaluate sAP5, sAP10, sAP15 for LCNN
Usage:
eval-sAP.py <path>...
eval-sAP.py (-h | --help )
Examples:
python eval-sAP.py logs/*/npz/000*
Arguments:
<path> One or more directories from train.py
Options:
-h --help Show this screen.
"""
import os
import sys
import glob
import os.path as osp
import numpy as np
import scipy.io
import matplotlib as mpl
import matplotlib.pyplot as plt
from docopt import docopt
import lcnn.utils
import lcnn.metric
GT = "data/wireframe/valid/*.npz"
def line_score(path, threshold=5):
preds = sorted(glob.glob(path))
gts = sorted(glob.glob(GT))
n_gt = 0
lcnn_tp, lcnn_fp, lcnn_scores = [], [], []
for pred_name, gt_name in zip(preds, gts):
with np.load(pred_name) as fpred:
lcnn_line = fpred["lines"][:, :, :2]
lcnn_score = fpred["score"]
with np.load(gt_name) as fgt:
gt_line = fgt["lpos"][:, :, :2]
n_gt += len(gt_line)
for i in range(len(lcnn_line)):
if i > 0 and (lcnn_line[i] == lcnn_line[0]).all():
lcnn_line = lcnn_line[:i]
lcnn_score = lcnn_score[:i]
break
tp, fp = lcnn.metric.msTPFP(lcnn_line, gt_line, threshold)
lcnn_tp.append(tp)
lcnn_fp.append(fp)
lcnn_scores.append(lcnn_score)
lcnn_tp = np.concatenate(lcnn_tp)
lcnn_fp = np.concatenate(lcnn_fp)
lcnn_scores = np.concatenate(lcnn_scores)
lcnn_index = np.argsort(-lcnn_scores)
lcnn_tp = np.cumsum(lcnn_tp[lcnn_index]) / n_gt
lcnn_fp = np.cumsum(lcnn_fp[lcnn_index]) / n_gt
return lcnn.metric.ap(lcnn_tp, lcnn_fp)
if __name__ == "__main__":
args = docopt(__doc__)
def work(path):
print(f"Working on {path}")
return [100 * line_score(f"{path}/*.npz", t) for t in [5, 10, 15]]
dirs = sorted(sum([glob.glob(p) for p in args["<path>"]], []))
results = lcnn.utils.parmap(work, dirs)
for d, msAP in zip(dirs, results):
print(f"{d}: {msAP[0]:2.1f} {msAP[1]:2.1f} {msAP[2]:2.1f}")