forked from clovaai/deep-text-recognition-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtext_recog.cpp
153 lines (129 loc) · 3.88 KB
/
text_recog.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <vector>
#include <string>
using namespace cv;
using namespace cv::dnn;
using namespace std;
const char *keys =
"{ help h | | Print help message. }"
"{ modelPath | | Path to a binary .onnx file contains trained text recognition model.}"
"{ imgPath | | test image path}";
const std::string vocabulary = "0123456789abcdefghijklmnopqrstuvwxyz";
std::string decodeRec(Mat prediction);
void PrintMat(Mat A)
{
cout<<"size of NCHW = ["<<A.size[0]<<" x "<<A.size[1]<<" x " <<A.size[2]<<"]"<<endl;
cout<<"h = "<<A.rows<<", w = "<<A.cols<<endl;
for(int i=0;i<A.rows;i++)
{
for(int j=0;j<A.cols;j++)
cout<<A.at<Vec3b>(i,j)<<' ';
// cout<<A.at<uchar>(i,j)<<' ';
cout<<endl;
}
cout<<endl;
}
Mat keepImageRatioWithPad(Mat image, int bolbW, int blobH)
{
// imgH = 32, imgW = 100
int imgW = image.size().width;
int imgH = image.size().height;
int resizedW = 0;
float aspectRatio = float(imgW)/float(imgH);
// Mat resizedImage(Size(100,32), CV_8UC3, Scalar(0));
if(ceil(aspectRatio * blobH) > bolbW )
{
resizedW = bolbW;
}
else
{
resizedW = ceil(aspectRatio * blobH);
}
resize(image, image, Size(resizedW, blobH));
if(resizedW < bolbW){
transpose(image, image);
Mat colData = image.row(resizedW-1);
for(int i = resizedW; i< bolbW; i++){
image.push_back(colData);
}
transpose(image, image);
}
cout<<"resized imag size "<<image.size()<<endl;
return image;
}
int main(int argc, char **argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
string modelPath = parser.get<String>("modelPath");
string imgPath = parser.get<String>("imgPath");
static const std::string kWinCrop = "show crop image";
namedWindow(kWinCrop, WINDOW_AUTOSIZE);
dnn::Net net;
try
{
net = dnn::readNet(modelPath);
cout<<"model load sucessuful"<<endl;
}
catch (cv::Exception &ee)
{
std::cerr << "Exception: " << ee.what() << std::endl;
if (net.empty())
{
std::cout << "Can't load the network by using the flowing files:" << std::endl;
std::cout << "modelPath: " << modelPath << std::endl;
return 1;
}
}
Mat pred;
Mat img = imread(imgPath, IMREAD_GRAYSCALE);
// if keep image ratio
// img = keepImageRatioWithPad(img, 100, 32);
// imshow("keep ratio ", img);
// waitKey(200);
double scale = 1.0/255.0;
Mat blobImg = dnn::blobFromImage(img,scale, Size(100,32),Scalar(),true); // NCHW =
blobImg -= 0.5;
blobImg /= 0.5;
const string input_name = string("input");
net.setInput(blobImg, input_name);
pred = net.forward();
string decodeSeq = decodeRec(pred);
cout<<" text recog output is :"<<decodeSeq<<endl;
return 0;
}
std::string decodeRec(Mat prediction)
{
std::string decodeSeq = "";
bool ctcFlag = true;
for (int i = 0; i < prediction.size[0]; i++) {
int maxLoc = 0;
float maxScore = prediction.at<float>(i, 0);
for (uint j = 0; j < vocabulary.length() + 1; j++) {
float score = prediction.at<float>(i, j);
if (maxScore < score) {
maxScore = score;
maxLoc = j;
}
}
if (maxLoc > 0) {
char currentChar = vocabulary[maxLoc - 1];
if (currentChar != decodeSeq.back() || ctcFlag) {
decodeSeq += currentChar;
ctcFlag = false;
}
} else {
ctcFlag = true;
}
}
return decodeSeq;
}