-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathmipnerf360_tests.py
627 lines (493 loc) · 23.1 KB
/
mipnerf360_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import torch
import numpy as np
import scipy as sp
from tqdm import tqdm
from functools import partial
from termcolor import colored
from easyvolcap.utils.console_utils import *
from easyvolcap.utils.test_utils import my_tests
from easyvolcap.utils.loss_utils import lossfun_outer, inner_outer, lossfun_distortion, interval_distortion
from easyvolcap.utils.prop_utils import importance_sampling, weighted_percentile, searchsorted, max_dilate_weights, max_dilate, query, anneal_weights
@catch_throw
def assert_true(expr):
if isinstance(expr, torch.Tensor):
expr = expr.all()
assert expr, f'{repr(expr)} is not true'
@catch_throw
def assert_func(func, *args, **kwargs):
return func(*args, **kwargs)
def inner(t0, t1, w1):
"""A reference implementation for computing the inner measure of (t1, w1)."""
w0_inner = []
for i in range(len(t0) - 1):
w_sum = 0
for j in range(len(t1) - 1):
if (t1[j] >= t0[i]) and (t1[j + 1] < t0[i + 1]):
w_sum += w1[j]
w0_inner.append(w_sum)
w0_inner = torch.tensor(w0_inner)
return w0_inner
# translation function from pytorch grammar to numpy grammar
def torch_randint(shape, minval, maxval):
return torch.randint(minval, maxval, shape)
def torch_uniform(shape, minval=0., maxval=1.):
return torch.rand(shape) * (maxval - minval) + minval
def torch_normal(shape=()):
return torch.normal(0., 1., size=shape)
def torch_sorted(v, axis=-1):
return torch.sort(v, dim=axis)[0]
def torch_mean(v: torch.Tensor):
if v.dtype == torch.bool:
return torch.mean(v.float())
return torch.mean(v)
def torch_cumsum(v: torch.Tensor, axis=-1):
return torch.cumsum(v, dim=axis)
def torch_maximum(a, b):
if not isinstance(a, torch.Tensor):
a = torch.tensor(a)
if not isinstance(b, torch.Tensor):
b = torch.tensor(b)
return torch.maximum(a, b)
def torch_mininum(a, b):
if not isinstance(a, torch.Tensor):
a = torch.tensor(a)
if not isinstance(b, torch.Tensor):
b = torch.tensor(b)
return torch.minimum(a, b)
def torch_softmax(v, axis=-1):
return torch.softmax(v, axis)
def outer(t0, t1, w1):
"""A reference implementation for computing the outer measure of (t1, w1)."""
w0_outer = []
for i in range(len(t0) - 1):
w_sum = 0
for j in range(len(t1) - 1):
if (t1[j + 1] >= t0[i]) and (t1[j] <= t0[i + 1]):
w_sum += w1[j]
w0_outer.append(w_sum)
w0_outer = torch.tensor(w0_outer)
return w0_outer
def test_searchsorted_in_bounds():
"""Test that a[i] <= v < a[j], with (i, j) = searchsorted(a, v)."""
eps = 1e-7
for _ in range(10):
n = torch.randint(10, 100, ())
m = torch.randint(10, 100, ())
v = torch.rand((n,)) * (1 - eps - eps) + eps
a, _ = torch.sort(torch.rand((m,)))
a = torch.cat([torch.tensor([0., ]), a, torch.tensor([1., ])])
idx_lo, idx_hi = searchsorted(a, v)
assert_true(torch.all(a[idx_lo] <= v))
assert_true(torch.all(a[idx_hi] > v))
def test_searchsorted_out_of_bounds():
"""searchsorted should produce the first/last indices when out of bounds."""
for _ in range(10):
n = torch.randint(10, 100, ())
m = torch.randint(10, 100, ())
a, _ = torch.sort(torch.rand((m,)) + 1.0)
v_lo = torch.rand((n,)) * 0.9
v_hi = torch.rand((n, )) * (3 - 2.1) + 2.1
idx_lo, idx_hi = searchsorted(a, v_lo)
assert_true(torch.all(idx_lo == 0))
assert_true(torch.all(idx_hi == 0))
idx_lo, idx_hi = searchsorted(a, v_hi)
assert_true(torch.all(idx_lo == m - 1))
assert_true(torch.all(idx_hi == m - 1))
def test_searchsorted_reference():
"""Test against torch.searchsorted, which behaves similarly to ours."""
eps = 1e-7
n = 30
m = 40
# Generate query points in [eps, 1-eps].
v = torch.rand([n]) * (1 - eps - eps) + eps
# Generate sorted reference points that span all of [0, 1].
a, _ = torch.sort(torch.rand([m]))
a = torch.cat([torch.tensor([0.]), a, torch.tensor([1.])])
_, idx_hi = searchsorted(a, v)
assert_true((np.array_equal(np.searchsorted(a, v), idx_hi.numpy())))
def test_searchsorted():
"""An alternative correctness test for in-range queries to searchsorted."""
a, _ = torch.sort(torch_uniform([10], minval=-4, maxval=4))
v = torch_uniform([100], minval=-6, maxval=6)
idx_lo, idx_hi = searchsorted(a, v)
for x, i0, i1 in zip(v, idx_lo, idx_hi):
if x < torch.min(a):
i0_true, i1_true = [0] * 2
elif x > torch.max(a):
i0_true, i1_true = [len(a) - 1] * 2
else:
i0_true = torch.argmax(torch.where(x >= a, a, -torch.inf))
i1_true = torch.argmin(torch.where(x < a, a, torch.inf))
assert_func(np.testing.assert_array_equal, i0_true, i0)
assert_func(np.testing.assert_array_equal, i1_true, i1)
def impl_test_lossfun_outer(num_ablate, is_all_zero):
"""Two histograms of the same/diff points have a loss of zero/non-zero."""
eps = 1e-12 # Need a little slack because of cumsum's numerical weirdness.
all_zero = True
for _ in range(10):
num_pts, d0, d1 = torch_randint([3], minval=10, maxval=20)
t0 = torch_sorted(torch_uniform([d0 + 1]), axis=-1)
t1 = torch_sorted(torch_uniform([d1 + 1]), axis=-1)
lo = torch_maximum(torch.min(t0), torch.min(t1)) + 0.1
hi = torch_mininum(torch.max(t0), torch.max(t1)) - 0.1
rand = torch_uniform([num_pts], minval=lo, maxval=hi)
pts = rand
pts_ablate = rand[:-num_ablate] if num_ablate > 0 else pts
w0 = []
for i in range(len(t0) - 1):
w0.append(torch_mean((pts_ablate >= t0[i]) & (pts_ablate < t0[i + 1])))
w0 = torch.tensor(w0)
w1 = []
for i in range(len(t1) - 1):
w1.append(torch_mean((pts >= t1[i]) & (pts < t1[i + 1])))
w1 = torch.tensor(w1)
all_zero &= torch.all(lossfun_outer(t0, w0, t1, w1) < eps)
assert_true(is_all_zero == all_zero)
test_lossfun_outer_sameset = partial(impl_test_lossfun_outer, 0, True)
test_lossfun_outer_diffset = partial(impl_test_lossfun_outer, 2, False)
def test_inner_outer():
"""Two histograms of the same points will be bounds on each other."""
for _ in range(10):
d0, d1, num_pts = torch_randint([3], minval=10, maxval=20)
t0 = torch_sorted(torch_uniform([d0 + 1]), axis=-1)
t1 = torch_sorted(torch_uniform([d1 + 1]), axis=-1)
lo = torch_maximum(torch.min(t0), torch.min(t1)) + 0.1
hi = torch_mininum(torch.max(t0), torch.max(t1)) - 0.1
pts = torch_uniform([num_pts], minval=lo, maxval=hi)
w0 = []
for i in range(len(t0) - 1):
w0.append(torch.sum((pts >= t0[i]) & (pts < t0[i + 1])))
w0 = torch.tensor(w0)
w1 = []
for i in range(len(t1) - 1):
w1.append(torch.sum((pts >= t1[i]) & (pts < t1[i + 1])))
w1 = torch.tensor(w1)
w0_inner, w0_outer = inner_outer(t0, t1, w1)
w1_inner, w1_outer = inner_outer(t1, t0, w0)
assert_true(torch.all(w0_inner <= w0) and torch.all(w0 <= w0_outer))
assert_true(torch.all(w1_inner <= w1) and torch.all(w1 <= w1_outer))
def test_lossfun_outer_monotonic():
"""The loss is invariant to monotonic transformations on `t`."""
def curve_fn(x): return 1 + x**3 # Some monotonic transformation.
for _ in range(10):
d0, d1 = torch_randint([2], minval=10, maxval=20)
t0 = torch_sorted(torch_uniform([d0 + 1]), axis=-1)
t1 = torch_sorted(torch_uniform([d1 + 1]), axis=-1)
w0 = torch.exp(torch_normal([d0]))
w1 = torch.exp(torch_normal([d1]))
excess = lossfun_outer(t0, w0, t1, w1)
curve_excess = lossfun_outer(curve_fn(t0), w0, curve_fn(t1), w1)
assert_true(torch.all(excess == curve_excess))
def test_lossfun_outer_self_zero():
"""The loss is ~zero for the same (t, w) step function."""
for _ in range(10):
d = torch_randint((), minval=10, maxval=20)
t = torch_sorted(torch_uniform([d + 1]), axis=-1)
w = torch.exp(torch_normal([d]))
assert_true(torch.all(lossfun_outer(t, w, t, w) < 1e-10))
def test_outer_measure_reference():
"""Test that outer measures match a reference implementation."""
for _ in range(10):
d0, d1 = torch_randint([2], minval=10, maxval=20)
t0 = torch_sorted(torch_uniform([d0 + 1]), axis=-1)
t1 = torch_sorted(torch_uniform([d1 + 1]), axis=-1)
w0 = torch.exp(torch_normal([d0]))
_, w1_outer = inner_outer(t1, t0, w0)
w1_outer_ref = outer(t1, t0, w0)
assert_func(np.testing.assert_allclose, w1_outer, w1_outer_ref, atol=1E-5, rtol=1E-5)
def test_inner_measure_reference():
"""Test that inner measures match a reference implementation."""
for _ in range(10):
d0, d1 = torch_randint([2], minval=10, maxval=20)
t0 = torch_sorted(torch_uniform([d0 + 1]), axis=-1)
t1 = torch_sorted(torch_uniform([d1 + 1]), axis=-1)
w0 = torch.exp(torch_normal([d0]))
w1_inner, _ = inner_outer(t1, t0, w0)
w1_inner_ref = inner(t1, t0, w0)
assert_func(np.testing.assert_allclose, w1_inner, w1_inner_ref, rtol=1e-5, atol=1e-5)
def impl_test_sample_train_mode(randomized, single_jitter):
"""Test that piecewise-constant sampling reproduces its distribution."""
batch_size = 4
num_bins = 16
num_samples = 1000000
precision = 1e5
# Generate a series of random PDFs to sample from.
data = []
for _ in range(batch_size):
# Randomly initialize the distances between bins.
# We're rolling our own fixed precision here to make cumsum exact.
bins_delta = torch.round(precision * torch.exp(
torch_uniform(shape=(num_bins + 1,), minval=-3, maxval=3)))
# Set some of the bin distances to 0.
bins_delta *= torch_uniform(shape=bins_delta.shape) < 0.9
# Integrate the bins.
bins = torch_cumsum(bins_delta) / precision
bins += torch_normal() * num_bins / 2
# Randomly generate weights, allowing some to be zero.
weights = torch_maximum(
0, torch_uniform(shape=(num_bins,), minval=-0.5, maxval=1.))
gt_hist = weights / weights.sum()
data.append((bins, weights, gt_hist))
bins, weights, gt_hist = [torch.stack(x) for x in zip(*data)]
# Draw samples from the batch of PDFs.
samples = importance_sampling(
bins,
torch_softmax(weights.log() + 0.7),
num_samples,
perturb=randomized,
single_jitter=single_jitter,
)
assert_true(samples.shape[-1] == num_samples)
# Check that samples are sorted. (sometimes this won't pass...)
assert_func(np.testing.assert_array_compare, lambda x, y: x >= y, samples[..., 1:], samples[..., :-1])
# (?<=\s)(np\.testing\.\w*)\(
# assert_func($1,
# Verify that each set of samples resembles the target distribution.
for i_samples, i_bins, i_gt_hist in zip(samples, bins, gt_hist):
i_hist = torch.histogram(i_samples, i_bins)[0].float() / num_samples
i_gt_hist = torch.tensor(i_gt_hist)
# Merge any of the zero-span bins until there aren't any left.
while torch.any(i_bins[:-1] == i_bins[1:]):
# find first zero-span index
j = int(torch.where(i_bins[:-1] == i_bins[1:])[0][0])
# merge i_hist
left = i_hist[:j]
if j + 1 < len(i_hist):
middle = torch.tensor([i_hist[j] + i_hist[j + 1]])
else:
middle = torch.empty((0,))
if j + 2 < len(i_hist):
right = i_hist[j + 2:]
else:
right = torch.empty((0,))
i_hist = torch.cat([left, middle, right])
# merge i_gt_hist
left = i_gt_hist[:j]
if j + 1 < len(i_gt_hist):
middle = torch.tensor([i_gt_hist[j] + i_gt_hist[j + 1]])
else:
middle = torch.empty((0,))
if j + 2 < len(i_gt_hist):
right = i_gt_hist[j + 2:]
else:
right = torch.empty((0,))
i_gt_hist = torch.cat([left, middle, right])
# merge i_bins
i_bins = torch.cat([i_bins[:j], i_bins[j + 1:]])
# Angle between the two histograms in degrees.
angle = 180 / torch.pi * torch.arccos(
torch_mininum(
1.,
torch_mean((i_hist * i_gt_hist) /
torch.sqrt(torch_mean(i_hist**2) * torch_mean(i_gt_hist**2)))))
# Jensen-Shannon divergence.
m = (i_hist + i_gt_hist) / 2
js_div = torch.sum(sp.special.kl_div(i_hist, m) + sp.special.kl_div(i_gt_hist, m)) / 2
assert_true(angle <= 0.5)
assert_true(js_div <= 1e-5)
test_sample_train_mode_deterministic = partial(impl_test_sample_train_mode, False, False)
test_sample_train_mode_random_single_jitter = partial(impl_test_sample_train_mode, True, True)
test_sample_train_mode_random_multiple_jitter = partial(impl_test_sample_train_mode, True, False)
def impl_test_sample_single_bin(randomized, single_jitter):
"""Test sampling when given a small `one hot' distribution."""
num_samples = 625
bins = torch.tensor([0, 1, 3, 6, 10], dtype=torch.float32)
for i in range(len(bins) - 1):
weights = torch.zeros(len(bins) - 1, dtype=torch.float32)
weights[i] = 1.
samples = importance_sampling(
bins[None],
weights[None],
num_samples,
perturb=randomized,
single_jitter=single_jitter,
)[0]
# All samples should be within [bins[i], bins[i+1]].
assert_true(torch.all(samples >= bins[i]))
assert_true(torch.all(samples <= bins[i + 1]))
test_sample_single_bin_deterministic = partial(impl_test_sample_single_bin, False, False)
test_sample_single_bin_random_single_jitter = partial(impl_test_sample_single_bin, True, True)
test_sample_single_bin_random_multiple_jitter = partial(impl_test_sample_single_bin, True, False)
def impl_test_sample_sparse_delta(randomized, single_jitter):
"""Test sampling when given a large distribution with a big delta in it."""
num_samples = 100
num_bins = 100000
bins = torch.arange(num_bins)
weights = np.ones(len(bins) - 1)
delta_idx = len(weights) // 2
weights[delta_idx] = len(weights) - 1
samples = importance_sampling(
bins[None],
torch_softmax(torch_maximum(1e-15, weights[None]).log()),
num_samples,
perturb=randomized,
single_jitter=single_jitter,
)[0]
# All samples should be within the range of the bins.
assert_true(torch.all(samples >= bins[0]))
assert_true(torch.all(samples <= bins[-1]))
# Samples modded by their bin index should resemble a uniform distribution.
samples_mod = torch.fmod(samples, 1)
assert_true(
sp.stats.kstest(samples_mod, 'uniform', (0, 1)).statistic <= 0.2)
# The delta function bin should contain ~half of the samples.
in_delta = (samples >= bins[delta_idx]) & (samples <= bins[delta_idx + 1])
assert_func(np.testing.assert_allclose, torch.mean(in_delta.float()), 0.5, atol=0.05)
test_sample_sparse_delta_deterministic = partial(impl_test_sample_sparse_delta, False, False)
test_sample_sparse_delta_random_single_jitter = partial(impl_test_sample_sparse_delta, True, True)
test_sample_sparse_delta_random_multiple_jitter = partial(impl_test_sample_sparse_delta, True, False)
def impl_test_sample_large_flat(randomized, single_jitter):
"""Test sampling when given a large flat distribution."""
num_samples = 100
num_bins = 100000
bins = torch.arange(num_bins)
weights = np.ones(len(bins) - 1)
samples = importance_sampling(
bins[None],
torch_softmax(torch_maximum(1e-15, weights[None]).log()),
num_samples,
perturb=randomized,
single_jitter=single_jitter,
)[0]
# All samples should be within the range of the bins.
assert_true(torch.all(samples >= bins[0]))
assert_true(torch.all(samples <= bins[-1]))
# Samples modded by their bin index should resemble a uniform distribution.
samples_mod = torch.fmod(samples, 1)
assert_true(
sp.stats.kstest(samples_mod, 'uniform', (0, 1)).statistic <= 0.2)
# All samples should collectively resemble a uniform distribution.
assert_true(
sp.stats.kstest(samples, 'uniform', (bins[0], bins[-1])).statistic <= 0.2)
test_sample_large_flat_deterministic = partial(impl_test_sample_large_flat, False, False)
test_sample_large_flat_random_single_jitter = partial(impl_test_sample_large_flat, True, True)
test_sample_large_flat_random_multiple_jitter = partial(impl_test_sample_large_flat, True, False)
def test_distortion_loss_against_sampling():
"""Test that the distortion loss matches a stochastic approximation."""
# Construct a random step function that defines a weight distribution.
n, d = 10, 8
t = torch_uniform(minval=-3, maxval=3, shape=(n, d + 1))
t, _ = torch.sort(t, axis=-1)
logits = 2 * torch_normal(shape=(n, d))
# Compute the distortion loss.
w = torch.softmax(logits, axis=-1)
losses = lossfun_distortion(t, w)
# Approximate the distortion loss using samples from the step function.
samples = importance_sampling(t, torch_softmax(logits), 10000, single_jitter=False)
losses_stoch = []
for i in range(n):
losses_stoch.append(torch_mean(torch.abs(samples[i][:, None] - samples[i][None, :])))
losses_stoch = torch.tensor(losses_stoch)
assert_func(np.testing.assert_allclose, losses, losses_stoch, atol=1e-4, rtol=1e-4)
def test_distortion_loss_against_interval_distortion():
"""Test that the distortion loss matches a brute-force alternative."""
# Construct a random step function that defines a weight distribution.
n, d = 3, 8
t = torch_uniform(minval=-3, maxval=3, shape=(n, d + 1))
t = torch_sorted(t, axis=-1)
logits = 2 * torch_normal(shape=(n, d))
# Compute the distortion loss.
w = torch_softmax(logits, axis=-1)
losses = lossfun_distortion(t, w)
# Compute it again in a more brute-force way, but computing the weighted
# distortion of all pairs of intervals.
d = interval_distortion(t[..., :-1, None], t[..., 1:, None],
t[..., None, :-1], t[..., None, 1:])
losses_alt = torch.sum(w[:, None, :] * w[:, :, None] * d, axis=[-1, -2])
assert_func(np.testing.assert_allclose, losses, losses_alt, atol=1e-6, rtol=1e-4)
def test_interval_distortion_against_brute_force():
n, d = 3, 7
t0 = torch_uniform(minval=-3, maxval=3, shape=(n, d + 1))
t0 = torch_sorted(t0, axis=-1)
t1 = torch_uniform(minval=-3, maxval=3, shape=(n, d + 1))
t1 = torch_sorted(t1, axis=-1)
distortions = interval_distortion(t0[..., :-1], t0[..., 1:],
t1[..., :-1], t1[..., 1:])
distortions_brute = np.array(torch.zeros_like(distortions))
for i in range(n):
for j in range(d):
distortions_brute[i, j] = torch.mean(
torch.abs(
torch.linspace(t0[i, j], t0[i, j + 1], 5001)[:, None] -
torch.linspace(t1[i, j], t1[i, j + 1], 5001)[None, :]))
assert_func(np.testing.assert_allclose,
distortions, distortions_brute, atol=1e-6, rtol=1e-3)
def test_weighted_percentile():
"""Test that step function percentiles match the empirical percentile."""
num_samples = 1000000
for _ in range(10):
d = torch_randint((), minval=10, maxval=20)
ps = 100 * torch_uniform([3])
t = torch.sort(torch_normal([d + 1]), dim=-1)[0]
w = torch_softmax(torch_normal([d]))
samples = importance_sampling(t, w, num_samples, single_jitter=False)
true_percentiles = torch.from_numpy(np.percentile(samples, ps))
our_percentiles = weighted_percentile(t, w, ps / 100)
assert_func(np.testing.assert_allclose, our_percentiles, true_percentiles, rtol=1e-4, atol=1e-4)
def test_weighted_percentile_vectorized():
shape = (3, 4)
d = 128
ps = 100 * torch_uniform((5,))
t = torch_sorted(torch_normal(shape + (d + 1,)), axis=-1)
w = torch_softmax(torch_normal(shape + (d,)))
percentiles_vec = weighted_percentile(t, w, ps / 100)
percentiles = []
for i in range(shape[0]):
percentiles.append([])
for j in range(shape[1]):
percentiles[i].append(weighted_percentile(t[i, j], w[i, j], ps / 100))
percentiles[i] = torch.stack(percentiles[i])
percentiles = torch.stack(percentiles)
assert_func(np.testing.assert_allclose,
percentiles_vec, percentiles, rtol=1e-5, atol=1e-5)
def test_max_dilate():
"""Compare max_dilate to a brute force test on queries of step functions."""
n, d, dilation = 20, 8, 0.53
# Construct a non-negative step function.
t = torch_cumsum(
torch_randint(minval=1, maxval=10, shape=(n, d + 1)),
axis=-1) / 10
w = torch_softmax(torch_normal(shape=(n, d)), axis=-1)
# Dilate it.
td, wd = max_dilate(t, w, dilation)
# Construct queries at the midpoint of each interval.
tq = (torch.arange((d + 4) * 10) - 2.5) / 10
# Query the step function and its dilation.
wq = query(tq[None], t, w)
wdq = query(tq[None], td, wd)
# The queries of the dilation must be the max of the non-dilated queries.
mask = torch.abs(tq[None, :] - tq[:, None]) <= dilation
for i in range(n):
wdq_i = torch.max(mask * wq[i], axis=-1)[0]
assert_func(np.testing.assert_array_equal, wdq[i], wdq_i)
def test_weight_annealing_zero_slope_noop():
"""Test that when annealing rate is 1.0, annealing is a noop"""
n, d = 100, 500
# Construct a non-negative step function.
t = torch_cumsum(
torch_randint(minval=1, maxval=10, shape=(n, d + 1)),
axis=-1) / 10
w = torch_softmax(torch_normal(shape=(n, d)), axis=-1)
# Anneal the weight according to impl
wn = anneal_weights(t, w, 1, 0)
assert_func(np.testing.assert_allclose, w, wn, rtol=1e-5, atol=1e-5)
def impl_test_weight_annealing(train_frac, anneal_slope):
"""Test weight annealing function against a more brute force computation"""
n, d = 100, 500
# Construct a non-negative step function.
t = torch_cumsum(
torch_randint(minval=1, maxval=10, shape=(n, d + 1)),
axis=-1) / 10
w = torch_softmax(torch_normal(shape=(n, d)), axis=-1)
# Anneal the weight according to impl
wn = anneal_weights(t, w, train_frac, anneal_slope)
def bias(x, s): return (s * x) / ((s - 1) * x + 1)
anneal = bias(train_frac, anneal_slope)
wt = w ** anneal / torch.sum(w ** anneal, dim=-1, keepdim=True) * torch.sum(w, dim=-1, keepdim=True) # more brute force way
assert_func(np.testing.assert_allclose, wn, wt, rtol=1e-5, atol=1e-5)
test_weight_annealing_high_high = partial(impl_test_weight_annealing, 0.9, 10)
test_weight_annealing_high_low = partial(impl_test_weight_annealing, 0.9, 0.1)
test_weight_annealing_low_high = partial(impl_test_weight_annealing, 0.1, 10)
test_weight_annealing_low_low = partial(impl_test_weight_annealing, 0.1, 0.1)
if __name__ == '__main__':
my_tests(globals())