Here's a directory tree of the core modules of EasyVolcap.
I commended on the directory structure of the easyvolcap
folder, which should give you a general sense about our codebase's organization.
easyvolcap
├── engine # configuration and module registration control
│ ├── __init__.py # the entry point of EasyVolcap
│ ├── config.py
│ ├── registry.py
│ └── ...
├── dataloaders # basic torch multi-process dataloader
│ ├── datasets
│ │ ├── volumetric_video_dataset.py # multi-view dataset, with sharding, memory storage, jpeg/png compression
│ │ └── ...
│ ├── datasamplers.py # controls the sampling process (view? frame?)
│ └── volumetric_video_dataloader.py
├── models # a `model` controls the flow of batch -> output
│ ├── cameras # make camera parameters optimizable
│ │ ├── optimizable_camera.py
│ │ └── ...
│ ├── samplers # sample points on rays (NeRF-like), or just output the full image here (custom network)
│ │ ├── importance_sampler.py
│ │ └── ...
│ ├── networks # NeRF-like networks or network components
│ │ ├── embedders # convert from physical properties to features, also used elsewhere
│ │ │ ├── positional_encoding_embedder.py
│ │ │ └── ...
│ │ ├── regressors # convert from features to physical properties, also used elsewhere
│ │ │ ├── mlp_regressor.py
│ │ │ └── ...
│ │ ├── volumetric_video_network.py
│ │ └── ...
│ ├── renderers # render sampled points to image tensors
│ │ ├── volume_renderer.py
│ │ └── ...
│ ├── supervisors # compute losses
│ │ ├── volumetric_video_supervisor.py
│ │ └── ...
│ ├── volumetric_video_model.py
│ └── ...
├── runners
│ ├── evaluators # compute metrics and the call visualizers
│ │ ├── volumetric_video_evaluator.py
│ │ └── ...
│ ├── visualizers # convert from tensors to disk images
│ │ ├── volumetric_video_visualizer.py
│ │ └── ...
│ ├── moderators.py # like schedulers, but is customizable
│ ├── optimizers.py # torch optimizers
│ ├── schedulers.py # lr schedulers
│ ├── recorders.py # record logs to tensorboard
│ ├── volumetric_video_runner.py # controls the training loop
│ ├── volumetric_video_viewer.py # high-performance viewer
│ └── ...
├── scripts # entry points for EasyVolcap, all command-line should start from here
│ ├── main.py # evc -t test ...
│ └── wrap.py # evc-gui, evc-dist ...
└── utils # store utility functions here, should not import from other modules
├── shaders # we place the shaders here for easier loading from gl_utils
│ ├── splat.vert
│ ├── splat.frag
│ └── ...
├── console_utils.py # the main logging utils, import this for better logging
├── timer_utils.py # a global timer
├── data_utils.py
├── net_utils.py
├── egl_utils.py
├── gl_utils.py
└── ...
For more detailed descriptions and illustrations, please refer to our technical brief on arXiv.
For more details on the individual systems, please look into their corresponding documentation in the docs
directory.
Aside from the core modules and functionalities, we also provide a set of scripts
for common tasks, such as data preparation, mask extraction and external commands.
The tests
folder contains a set of unit tests for the core modules, which we plan on expanding and make more comprehensive in the future.
The configs
folder provides a set of experiment configurations to use for various systems.
configs
├── base.yaml # all configs should inherit this
├── datasets # contains dataset specific configurations, like where to find images and bbox etc -> corresponding to the `dataloaders` folder in easyvolcap
├── models # defines network modules' conbination -> corresponding to the `models` folder in easyvolcap
├── exps # combines datasets and models to form an experiment
├── specs # collection of config enties, so you don't have to type them in the command line everytime
└── projects # defines project specific experiments and dataset configurations (like splits)
scripts
├── enerf_outdoor # enerf_outdoor dataset integration
├── zjumocap # zjumocap dataset integration
├── easymocap # easymocap integration (mocap & calib), will expand
├── colmap # colmap integration (calib)
├── preprocess # convert dataset from one format to another (mostly to easyvolcap format)
├── segmentation # inference mask from images (or background)
└── tools # useful tools for visualization and easyvolcap management