-
Notifications
You must be signed in to change notification settings - Fork 45
/
vq_utils.py
787 lines (588 loc) · 25.4 KB
/
vq_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
# From: https://github.com/AlgoHunt/VQRF/blob/master/vq.py
from torch import nn
from torch.nn import functional as F
from torch.autograd import Function
from typing import Union, List, Tuple
from easyvolcap.engine import EMBEDDERS, REGRESSORS
import torch
from torch import nn, einsum
import torch.nn.functional as F
import torch.distributed as distributed
from torch.cuda.amp import autocast
from einops import rearrange, repeat
from contextlib import contextmanager
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def noop(*args, **kwargs):
pass
def l2norm(t):
return F.normalize(t, p=2, dim=-1)
def log(t, eps=1e-20):
return torch.log(t.clamp(min=eps))
def uniform_init(*shape):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature=1., dim=-1):
if temperature == 0:
return t.argmax(dim=dim)
return ((t / temperature) + gumbel_noise(t)).argmax(dim=dim)
def ema_inplace(moving_avg, new, decay):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories, eps=1e-5):
return (x + eps) / (x.sum() + n_categories * eps)
def sample_vectors(samples, num):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def batched_sample_vectors(samples, num):
return torch.stack([sample_vectors(sample, num) for sample in samples.unbind(dim=0)], dim=0)
def pad_shape(shape, size, dim=0):
return [size if i == dim else s for i, s in enumerate(shape)]
def sample_multinomial(total_count, probs):
device = probs.device
probs = probs.cpu()
total_count = probs.new_full((), total_count)
remainder = probs.new_ones(())
sample = torch.empty_like(probs, dtype=torch.long)
for i, p in enumerate(probs):
s = torch.binomial(total_count, p / remainder)
sample[i] = s
total_count -= s
remainder -= p
return sample.to(device)
def all_gather_sizes(x, dim):
size = torch.tensor(x.shape[dim], dtype=torch.long, device=x.device)
all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())]
distributed.all_gather(all_sizes, size)
return torch.stack(all_sizes)
def all_gather_variably_sized(x, sizes, dim=0):
rank = distributed.get_rank()
all_x = []
for i, size in enumerate(sizes):
t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim))
distributed.broadcast(t, src=i, async_op=True)
all_x.append(t)
distributed.barrier()
return all_x
def sample_vectors_distributed(local_samples, num):
rank = distributed.get_rank()
all_num_samples = all_gather_sizes(local_samples, dim=0)
if rank == 0:
samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum())
else:
samples_per_rank = torch.empty_like(all_num_samples)
distributed.broadcast(samples_per_rank, src=0)
samples_per_rank = samples_per_rank.tolist()
local_samples = batched_sample_vectors(local_samples, samples_per_rank[rank])
all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim=0)
return torch.cat(all_samples, dim=0)
def batched_bincount(x, *, minlength):
batch, dtype, device = x.shape[0], x.dtype, x.device
target = torch.zeros(batch, minlength, dtype=dtype, device=device)
values = torch.ones_like(x)
target.scatter_add_(-1, x, values)
return target
def kmeans(
samples,
num_clusters,
num_iters=10,
use_cosine_sim=False,
sample_fn=batched_sample_vectors,
all_reduce_fn=noop
):
num_codebooks, dim, dtype, device = samples.shape[0], samples.shape[-1], samples.dtype, samples.device
means = sample_fn(samples, num_clusters)
for _ in range(num_iters):
if use_cosine_sim:
dists = samples @ rearrange(means, 'h n d -> h d n')
else:
dists = -torch.cdist(samples, means, p=2)
buckets = torch.argmax(dists, dim=-1)
bins = batched_bincount(buckets, minlength=num_clusters)
all_reduce_fn(bins)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_codebooks, num_clusters, dim, dtype=dtype)
new_means.scatter_add_(1, repeat(buckets, 'h n -> h n d', d=dim), samples)
new_means = new_means / rearrange(bins_min_clamped, '... -> ... 1')
all_reduce_fn(new_means)
if use_cosine_sim:
new_means = l2norm(new_means)
means = torch.where(
rearrange(zero_mask, '... -> ... 1'),
means,
new_means
)
return means, bins
def batched_embedding(indices, embeds):
batch, dim = indices.shape[1], embeds.shape[-1]
indices = repeat(indices, 'h b n -> h b n d', d=dim)
embeds = repeat(embeds, 'h c d -> h b c d', b=batch)
return embeds.gather(2, indices)
# regularization losses
def orthogonal_loss_fn(t):
# eq (2) from https://arxiv.org/abs/2112.00384
h, n = t.shape[:2]
normed_codes = l2norm(t)
identity = repeat(torch.eye(n, device=t.device), 'i j -> h i j', h=h)
cosine_sim = einsum('h i d, h j d -> h i j', normed_codes, normed_codes)
return ((cosine_sim - identity) ** 2).sum() / (h * n ** 2)
# distance types
class EuclideanCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
num_codebooks=1,
kmeans_init=False,
kmeans_iters=10,
decay=0.8,
eps=1e-5,
threshold_ema_dead_code=2,
use_ddp=False,
learnable_codebook=False,
sample_codebook_temp=0
):
super().__init__()
self.decay = decay
init_fn = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(num_codebooks, codebook_size, dim)
self.codebook_size = codebook_size
self.num_codebooks = num_codebooks
self.kmeans_iters = kmeans_iters
self.eps = eps
self.threshold_ema_dead_code = threshold_ema_dead_code
self.sample_codebook_temp = sample_codebook_temp
self.sample_fn = sample_vectors_distributed if use_ddp else batched_sample_vectors
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size))
self.register_buffer('embed_avg', embed.clone())
self.learnable_codebook = learnable_codebook
if learnable_codebook:
self.embed = nn.Parameter(embed)
else:
self.register_buffer('embed', embed)
@torch.jit.ignore
def init_embed_(self, data):
if self.initted:
return
embed, cluster_size = kmeans(
data,
self.codebook_size,
self.kmeans_iters,
sample_fn=self.sample_fn,
all_reduce_fn=self.all_reduce_fn
)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.initted.data.copy_(torch.Tensor([True]))
def replace(self, batch_samples, batch_mask):
batch_samples = l2norm(batch_samples)
for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim=0), batch_mask.unbind(dim=0))):
if not torch.any(mask):
continue
sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item())
self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...')
def expire_codes_(self, batch_samples, verbose):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
if verbose:
print(f'expire code count: {expired_codes.sum()}')
batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d')
self.replace(batch_samples, batch_mask=expired_codes)
@autocast(enabled=False)
def forward(self, x, weight=None, verbose=False):
if weight is not None:
weight = weight * weight.numel() / weight.sum()
needs_codebook_dim = x.ndim < 4
x = x.float()
if needs_codebook_dim:
x = rearrange(x, '... -> 1 ...')
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, 'h ... d -> h (...) d')
self.init_embed_(flatten)
embed = self.embed if not self.learnable_codebook else self.embed.detach()
dist = -torch.cdist(flatten, embed, p=2)
embed_ind = gumbel_sample(dist, dim=-1, temperature=self.sample_codebook_temp)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = embed_ind.view(*shape[:-1])
quantize = batched_embedding(embed_ind, self.embed)
if self.training:
if weight is not None:
cluster_size = (embed_onehot * weight).sum(dim=1)
else:
cluster_size = embed_onehot.sum(dim=1)
self.all_reduce_fn(cluster_size)
ema_inplace(self.cluster_size, cluster_size, self.decay)
if weight is not None:
embed_sum = einsum('h n d, h n c -> h c d', flatten * weight, embed_onehot)
else:
embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot)
self.all_reduce_fn(embed_sum)
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
ema_inplace(self.embed, embed_sum / rearrange(cluster_size, '... -> ... 1'), self.decay)
self.expire_codes_(x, verbose)
if needs_codebook_dim:
quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind))
return quantize, embed_ind
# main class
@EMBEDDERS.register_module()
class VectorQuantize(nn.Module):
def __init__(
self,
K,
D,
codebook_dim=None,
heads=1,
separate_codebook_per_head=False,
decay=0.8,
eps=1e-5,
kmeans_init=False,
kmeans_iters=10,
use_cosine_sim=False,
threshold_ema_dead_code=0,
channel_last=True,
accept_image_fmap=False,
commitment_weight=1.,
orthogonal_reg_weight=0.,
orthogonal_reg_active_codes_only=False,
orthogonal_reg_max_codes=None,
sample_codebook_temp=0.,
sync_codebook=False
):
super().__init__()
self.in_dim = D # single head or multihead, always use same input & output
self.out_dim = D # single head or multihead, always use same input & output
self.heads = heads
self.separate_codebook_per_head = separate_codebook_per_head
codebook_dim = default(codebook_dim, D)
codebook_input_dim = codebook_dim * heads
requires_projection = codebook_input_dim != D
self.project_in = nn.Linear(D, codebook_input_dim) if requires_projection else nn.Identity()
self.project_out = nn.Linear(codebook_input_dim, D) if requires_projection else nn.Identity()
self.eps = eps
self.commitment_weight = commitment_weight
has_codebook_orthogonal_loss = orthogonal_reg_weight > 0
self.orthogonal_reg_weight = orthogonal_reg_weight
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook
self._codebook = codebook_class(
dim=codebook_dim,
num_codebooks=heads if separate_codebook_per_head else 1,
codebook_size=K,
kmeans_init=kmeans_init,
kmeans_iters=kmeans_iters,
decay=decay,
eps=eps,
threshold_ema_dead_code=threshold_ema_dead_code,
use_ddp=sync_codebook,
learnable_codebook=has_codebook_orthogonal_loss,
sample_codebook_temp=sample_codebook_temp
)
self.codebook_size = K
self.accept_image_fmap = accept_image_fmap
self.channel_last = channel_last
@property
def codebook(self):
codebook = self._codebook.embed
if self.separate_codebook_per_head:
return codebook
return rearrange(codebook, '1 ... -> ...')
def forward(self, x, weight=None, verbose=False):
shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size
need_transpose = not self.channel_last and not self.accept_image_fmap
if self.accept_image_fmap:
height, width = x.shape[-2:]
x = rearrange(x, 'b c h w -> b (h w) c')
if need_transpose:
x = rearrange(x, 'b d n -> b n d')
x = self.project_in(x)
if is_multiheaded:
ein_rhs_eq = 'h b n d' if self.separate_codebook_per_head else '1 (b h) n d'
x = rearrange(x, f'b n (h d) -> {ein_rhs_eq}', h=heads)
quantize, embed_ind = self._codebook(x, weight, verbose)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.], device=device, requires_grad=self.training)
if self.training:
if self.commitment_weight > 0:
commit_loss = F.mse_loss(quantize.detach(), x)
loss = loss + commit_loss * self.commitment_weight
if self.orthogonal_reg_weight > 0:
codebook = self._codebook.embed
if self.orthogonal_reg_active_codes_only:
# only calculate orthogonal loss for the activated codes for this batch
unique_code_ids = torch.unique(embed_ind)
codebook = codebook[unique_code_ids]
num_codes = codebook.shape[0]
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
rand_ids = torch.randperm(num_codes, device=device)[:self.orthogonal_reg_max_codes]
codebook = codebook[rand_ids]
orthogonal_reg_loss = orthogonal_loss_fn(codebook)
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight
if is_multiheaded:
if self.separate_codebook_per_head:
quantize = rearrange(quantize, 'h b n d -> b n (h d)', h=heads)
embed_ind = rearrange(embed_ind, 'h b n -> b n h', h=heads)
else:
quantize = rearrange(quantize, '1 (b h) n d -> b n (h d)', h=heads)
embed_ind = rearrange(embed_ind, '1 (b h) n -> b n h', h=heads)
quantize = self.project_out(quantize)
if need_transpose:
quantize = rearrange(quantize, 'b n d -> b d n')
if self.accept_image_fmap:
quantize = rearrange(quantize, 'b (h w) c -> b c h w', h=height, w=width)
embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h=height, w=width)
return quantize, embed_ind, loss
class CosineSimCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
num_codebooks=1,
kmeans_init=False,
kmeans_iters=10,
sync_kmeans=True,
decay=0.8,
eps=1e-5,
threshold_ema_dead_code=2,
use_ddp=False,
learnable_codebook=False,
sample_codebook_temp=0.
):
super().__init__()
self.decay = decay
if not kmeans_init:
embed = l2norm(uniform_init(num_codebooks, codebook_size, dim))
else:
embed = torch.zeros(num_codebooks, codebook_size, dim)
self.codebook_size = codebook_size
self.num_codebooks = num_codebooks
self.kmeans_iters = kmeans_iters
self.eps = eps
self.threshold_ema_dead_code = threshold_ema_dead_code
self.sample_codebook_temp = sample_codebook_temp
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size))
self.learnable_codebook = learnable_codebook
if learnable_codebook:
self.embed = nn.Parameter(embed)
else:
self.register_buffer('embed', embed)
@torch.jit.ignore
def init_embed_(self, data):
if self.initted:
return
embed, cluster_size = kmeans(
data,
self.codebook_size,
self.kmeans_iters,
use_cosine_sim=True,
sample_fn=self.sample_fn,
all_reduce_fn=self.kmeans_all_reduce_fn
)
self.embed.data.copy_(embed)
self.cluster_size.data.copy_(cluster_size)
self.initted.data.copy_(torch.Tensor([True]))
def replace(self, batch_samples, batch_mask):
batch_samples = l2norm(batch_samples)
for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim=0), batch_mask.unbind(dim=0))):
if not torch.any(mask):
continue
sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item())
self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...')
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d')
self.replace(batch_samples, batch_mask=expired_codes)
@autocast(enabled=False)
def forward(self, x):
needs_codebook_dim = x.ndim < 4
x = x.float()
if needs_codebook_dim:
x = rearrange(x, '... -> 1 ...')
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, 'h ... d -> h (...) d')
flatten = l2norm(flatten)
self.init_embed_(flatten)
embed = self.embed if not self.learnable_codebook else self.embed.detach()
embed = l2norm(embed)
dist = einsum('h n d, h c d -> h n c', flatten, embed)
embed_ind = gumbel_sample(dist, dim=-1, temperature=self.sample_codebook_temp)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = embed_ind.view(*shape[:-1])
quantize = batched_embedding(embed_ind, self.embed)
if self.training:
bins = embed_onehot.sum(dim=1)
self.all_reduce_fn(bins)
ema_inplace(self.cluster_size, bins, self.decay)
zero_mask = (bins == 0)
bins = bins.masked_fill(zero_mask, 1.)
embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot)
self.all_reduce_fn(embed_sum)
embed_normalized = embed_sum / rearrange(bins, '... -> ... 1')
embed_normalized = l2norm(embed_normalized)
embed_normalized = torch.where(
rearrange(zero_mask, '... -> ... 1'),
embed,
embed_normalized
)
ema_inplace(self.embed, embed_normalized, self.decay)
self.expire_codes_(x)
if needs_codebook_dim:
quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind))
return quantize, embed_ind
class ResBlock(nn.Module):
def __init__(self, dim):
super().__init__()
self.block = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(dim, dim, 3, 1, 1),
nn.BatchNorm2d(dim),
nn.ReLU(True),
nn.Conv2d(dim, dim, 1),
nn.BatchNorm2d(dim)
)
def forward(self, x):
return x + self.block(x)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
try:
nn.init.xavier_uniform_(m.weight.data)
m.bias.data.fill_(0)
except AttributeError:
print("Skipping initialization of ", classname)
class VectorQuantizedVAE(nn.Module):
def __init__(self, input_dim, dim, K=512):
super().__init__()
self.encoder = nn.Sequential(
nn.Conv2d(input_dim, dim, 4, 2, 1),
nn.BatchNorm2d(dim),
nn.ReLU(True),
nn.Conv2d(dim, dim, 4, 2, 1),
ResBlock(dim),
ResBlock(dim),
)
self.codebook = VectorQuantizationEmbedding(K, dim)
self.decoder = nn.Sequential(
ResBlock(dim),
ResBlock(dim),
nn.ReLU(True),
nn.ConvTranspose2d(dim, dim, 4, 2, 1),
nn.BatchNorm2d(dim),
nn.ReLU(True),
nn.ConvTranspose2d(dim, input_dim, 4, 2, 1),
nn.Tanh()
)
self.apply(weights_init)
def encode(self, x):
z_e_x = self.encoder(x)
latents = self.codebook(z_e_x)
return latents
def decode(self, latents):
z_q_x = self.codebook.embedding(latents).permute(0, 3, 1, 2) # (B, D, H, W)
x_tilde = self.decoder(z_q_x)
return x_tilde
def forward(self, x):
z_e_x = self.encoder(x)
z_q_x_st, z_q_x = self.codebook.straight_through(z_e_x)
x_tilde = self.decoder(z_q_x_st)
return x_tilde, z_e_x, z_q_x
@EMBEDDERS.register_module()
class VectorQuantizationEmbedding(nn.Module):
def __init__(self, K: int, D: int):
super().__init__()
self.in_dim = D
self.out_dim = D
self.K = K
if K == 0: return # no vq
self.embedding = nn.Embedding(K, D)
nn.init.kaiming_normal_(self.embedding.weight.data)
def forward(self, z_e_x: torch.Tensor) -> torch.Tensor:
if self.K == 0: return z_e_x
z_e_x_ = z_e_x.permute(0, 2, 3, 1).contiguous()
latents = vector_quantization(z_e_x_, self.embedding.weight)
return latents
def straight_through(self, z_e_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if self.K == 0: return z_e_x, z_e_x
z_e_x_ = z_e_x.permute(0, 2, 3, 1).contiguous()
z_q_x_, indices = vector_quantization_straight_through(z_e_x_, self.embedding.weight.detach())
z_q_x = z_q_x_.permute(0, 3, 1, 2).contiguous()
z_q_x_bar_flatten = torch.index_select(self.embedding.weight,
dim=0, index=indices)
z_q_x_bar_ = z_q_x_bar_flatten.view_as(z_e_x_)
z_q_x_bar = z_q_x_bar_.permute(0, 3, 1, 2).contiguous()
return z_q_x, z_q_x_bar
class VectorQuantization(Function):
@ staticmethod
def forward(ctx, inputs: torch.Tensor, codebook: torch.Tensor):
with torch.no_grad():
embedding_size = codebook.size(1)
inputs_size = inputs.size()
inputs_flatten = inputs.view(-1, embedding_size)
codebook_sqr = torch.sum(codebook ** 2, dim=1)
inputs_sqr = torch.sum(inputs_flatten ** 2, dim=1, keepdim=True)
# Compute the distances to the codebook
distances = torch.addmm(codebook_sqr + inputs_sqr,
inputs_flatten, codebook.t(), alpha=-2.0, beta=1.0)
_, indices_flatten = torch.min(distances, dim=1)
indices = indices_flatten.view(*inputs_size[:-1])
ctx.mark_non_differentiable(indices)
return indices
@ staticmethod
def backward(ctx, grad_output):
raise RuntimeError('Trying to call `.grad()` on graph containing '
'`VectorQuantization`. The function `VectorQuantization` '
'is not differentiable. Use `VectorQuantizationStraightThrough` '
'if you want a straight-through estimator of the gradient.')
class VectorQuantizationStraightThrough(Function):
@ staticmethod
def forward(ctx, inputs, codebook):
indices = vector_quantization(inputs, codebook)
indices_flatten = indices.view(-1)
ctx.save_for_backward(indices_flatten, codebook)
ctx.mark_non_differentiable(indices_flatten)
codes_flatten = torch.index_select(codebook, dim=0,
index=indices_flatten)
codes = codes_flatten.view_as(inputs)
return (codes, indices_flatten)
@ staticmethod
def backward(ctx, grad_output, grad_indices):
grad_inputs, grad_codebook = None, None
if ctx.needs_input_grad[0]:
# Straight-through estimator
grad_inputs = grad_output.clone()
if ctx.needs_input_grad[1]:
# Gradient wrt. the codebook
indices, codebook = ctx.saved_tensors
embedding_size = codebook.size(1)
grad_output_flatten = (grad_output.contiguous()
.view(-1, embedding_size))
grad_codebook = torch.zeros_like(codebook)
grad_codebook.index_add_(0, indices, grad_output_flatten)
return (grad_inputs, grad_codebook)
vector_quantization = VectorQuantization.apply
vector_quantization_straight_through = VectorQuantizationStraightThrough.apply