-
Notifications
You must be signed in to change notification settings - Fork 44
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
""" | ||
Convert camera parameters format from EasyVolcap to nerfstudio | ||
""" | ||
|
||
import os | ||
import cv2 | ||
import copy | ||
import shutil | ||
import numpy as np | ||
from PIL import Image | ||
from easyvolcap.utils.console_utils import * | ||
from easyvolcap.utils.camera_utils import read_camera | ||
|
||
|
||
@catch_throw | ||
def main(args): | ||
args.output_dir = join(args.data_root, args.output_dir) | ||
args.intri = join(args.data_root, args.intri) | ||
args.extri = join(args.data_root, args.extri) | ||
|
||
cams = read_camera(args.intri, args.extri) | ||
assert "basenames" in cams and len(cams["basenames"]) | ||
basenames = sorted(cams["basenames"]) | ||
os.makedirs(args.output_dir, exist_ok=True) | ||
|
||
cameras = {} | ||
images = {} | ||
sizes = {} | ||
frames = os.listdir(join(args.data_root, args.image_dir, basenames[0])) | ||
frames = sorted([x.split(".")[0] for x in frames]) | ||
|
||
b, e, s = args.frame_range | ||
frames = frames[b:e:s] | ||
pbar = tqdm(total=len(basenames)) | ||
|
||
# Processing cameras | ||
transform_dict = {"frames": []} | ||
for cam_id, cam_name in enumerate(basenames): | ||
# read camera | ||
cam_dict = cams[cam_name] | ||
K = cam_dict["K"] | ||
R = cam_dict["R"] | ||
T = cam_dict["T"] | ||
img = cv2.imread( | ||
join( | ||
args.data_root, args.image_dir, cam_name, f"{frames[0]}{args.image_ext}" | ||
) | ||
) | ||
h, w = img.shape[:2] | ||
|
||
extrinsic = np.identity(4) | ||
extrinsic[:3, :3] = R | ||
extrinsic[:3, 3] = T[:, 0] | ||
pose = np.linalg.inv(extrinsic) | ||
pose[:, 1:3] *= -1 # opencv to opengl | ||
|
||
transform_dict["frames"].append( | ||
{ | ||
"transform_matrix": pose.tolist(), | ||
"w": w, | ||
"h": h, | ||
"fl_x": K[0, 0], | ||
"fl_y": K[1, 1], | ||
"cx": K[0, 2], | ||
"cy": K[1, 2], | ||
"k1": 0.0, | ||
"k2": 0.0, | ||
"p1": 0.0, | ||
"p2": 0.0, | ||
"camera_model": "OPENCV", | ||
"camera_label": cam_name, | ||
} | ||
) | ||
|
||
pbar.update() | ||
|
||
# Processing images and masks | ||
pbar = tqdm(total=len(frames)) | ||
for tem_label in frames: | ||
tranform_frame_dict = copy.deepcopy(transform_dict) | ||
for frame in tranform_frame_dict["frames"]: | ||
image_path = join( | ||
args.image_dir, frame["camera_label"], f"{tem_label}{args.image_ext}" | ||
) | ||
mask_path = join( | ||
args.mask_dir, frame["camera_label"], f"{tem_label}{args.mask_ext}" | ||
) | ||
src_image_path = join(args.data_root, image_path) | ||
src_mask_path = join(args.data_root, mask_path) | ||
tar_image_path = join(args.output_dir, image_path) | ||
tar_mask_path = join(args.output_dir, mask_path) | ||
|
||
if args.transparent_bg: | ||
# save images with alpha channel | ||
mask = Image.open(src_mask_path) | ||
mask = mask.convert("L") | ||
image = Image.open(src_image_path) | ||
image.putalpha(mask) | ||
|
||
tar_image_path = tar_image_path.replace(args.image_ext, ".png") | ||
os.makedirs(dirname(tar_image_path), exist_ok=True) | ||
image.save(tar_image_path) | ||
else: | ||
# save images and masks separately | ||
os.makedirs(dirname(tar_image_path), exist_ok=True) | ||
shutil.copy(src_image_path, tar_image_path) | ||
os.makedirs(dirname(tar_mask_path), exist_ok=True) | ||
shutil.copy(src_mask_path, tar_mask_path) | ||
|
||
frame["file_path"] = "../" + relpath(tar_image_path, args.output_dir) | ||
|
||
os.makedirs(join(args.output_dir, "nerfstudio"), exist_ok=True) | ||
with open(join(args.output_dir, "nerfstudio", f"{tem_label}.json"), "w") as f: | ||
json.dump(tranform_frame_dict, f, indent=4) | ||
|
||
pbar.update() | ||
|
||
|
||
if __name__ == "__main__": | ||
args = dotdict( | ||
data_root=f"/mnt/data/home/xuzhen/datasets/renbody/{scene_label}", | ||
output_dir=f"/mnt/data/home/jinyudong/data/renbody/{scene_label}", | ||
intri="optimized/intri.yml", | ||
extri="optimized/extri.yml", | ||
image_dir="images_calib", | ||
image_ext=".jpg", | ||
mask_dir="masks", | ||
mask_ext=".jpg", | ||
frame_range=[0, None, 1], | ||
transparent_bg=False, | ||
) | ||
args = dotdict(vars(build_parser(args, description=__doc__).parse_args())) | ||
|
||
main(args) |