You are given two jugs with capacities x and y litres. There is an infinite amount of water supply available. You need to determine whether it is possible to measure exactly z litres using these two jugs.
If z liters of water is measurable, you must have z liters of water contained within one or both buckets by the end.
Operations allowed:
Fill any of the jugs completely with water.
Empty any of the jugs.
Pour water from one jug into another till the other jug is completely full or the first jug itself is empty.
Example 1: (From the famous "Die Hard" example)
Input: x = 3, y = 5, z = 4
Output: True
Example 2:
Input: x = 2, y = 6, z = 5
Output: False
这是一道关于数论
的题目,确切地说是关于裴蜀定理
(英语:Bézout's identity)的题目。
摘自wiki的定义:
对任意两个整数 a、b,设 d是它们的最大公约数。那么关于未知数 x和 y的线性丢番图方程(称为裴蜀等式):
ax+by=m
有整数解 (x,y) 当且仅当 m是 d的整数倍。裴蜀等式有解时必然有无穷多个解。
因此这道题可以完全转化为裴蜀定理
。
- 数论
- 裴蜀定理
/*
* @lc app=leetcode id=365 lang=javascript
*
* [365] Water and Jug Problem
*
* https://leetcode.com/problems/water-and-jug-problem/description/
*
* algorithms
* Medium (28.76%)
* Total Accepted: 27K
* Total Submissions: 93.7K
* Testcase Example: '3\n5\n4'
*
* You are given two jugs with capacities x and y litres. There is an infinite
* amount of water supply available. You need to determine whether it is
* possible to measure exactly z litres using these two jugs.
*
* If z liters of water is measurable, you must have z liters of water
* contained within one or both buckets by the end.
*
* Operations allowed:
*
*
* Fill any of the jugs completely with water.
* Empty any of the jugs.
* Pour water from one jug into another till the other jug is completely full
* or the first jug itself is empty.
*
*
* Example 1: (From the famous "Die Hard" example)
*
*
* Input: x = 3, y = 5, z = 4
* Output: True
*
*
* Example 2:
*
*
* Input: x = 2, y = 6, z = 5
* Output: False
*
*/
/**
* @param {number} x
* @param {number} y
* @param {number} z
* @return {boolean}
*/
var canMeasureWater = function(x, y, z) {
if (x + y < z) return false;
if (z === 0) return true;
if (x === 0) return y === z;
if (y === 0) return x === z;
function GCD(a, b) {
let min = Math.min(a, b);
while (min) {
if (a % min === 0 && b % min === 0) return min;
min--;
}
return 1;
}
return z % GCD(x, y) === 0;
};