-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathpost_proc2.py
359 lines (289 loc) · 12.2 KB
/
post_proc2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
from scipy.ndimage import map_coordinates
from scipy.spatial.distance import pdist, squareform
from sklearn.decomposition import PCA
PI = float(np.pi)
def fuv2img(fuv, coorW=1024, floorW=1024, floorH=512):
'''
Project 1d signal in uv space to 2d floor plane image
'''
floor_plane_x, floor_plane_y = np.meshgrid(range(floorW), range(floorH))
floor_plane_x, floor_plane_y = -(floor_plane_y - floorH / 2), floor_plane_x - floorW / 2
floor_plane_coridx = (np.arctan2(floor_plane_y, floor_plane_x) / (2 * PI) + 0.5) * coorW - 0.5
floor_plane = map_coordinates(fuv, floor_plane_coridx.reshape(1, -1), order=1, mode='wrap')
floor_plane = floor_plane.reshape(floorH, floorW)
return floor_plane
def np_coorx2u(coorx, coorW=1024):
return ((coorx + 0.5) / coorW - 0.5) * 2 * PI
def np_coory2v(coory, coorH=512):
return -((coory + 0.5) / coorH - 0.5) * PI
def np_coor2xy(coor, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512):
'''
coor: N x 2, index of array in (col, row) format
'''
coor = np.array(coor)
u = np_coorx2u(coor[:, 0], coorW)
v = np_coory2v(coor[:, 1], coorH)
c = z / np.tan(v)
x = c * np.sin(u) + floorW / 2 - 0.5
y = -c * np.cos(u) + floorH / 2 - 0.5
return np.hstack([x[:, None], y[:, None]])
def np_x_u_solve_y(x, u, floorW=1024, floorH=512):
c = (x - floorW / 2 + 0.5) / np.sin(u)
return -c * np.cos(u) + floorH / 2 - 0.5
def np_y_u_solve_x(y, u, floorW=1024, floorH=512):
c = -(y - floorH / 2 + 0.5) / np.cos(u)
return c * np.sin(u) + floorW / 2 - 0.5
def np_xy2coor(xy, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512):
'''
xy: N x 2
'''
x = xy[:, 0] - floorW / 2 + 0.5
y = xy[:, 1] - floorH / 2 + 0.5
u = np.arctan2(x, -y)
v = np.arctan(z / np.sqrt(x**2 + y**2))
coorx = (u / (2 * PI) + 0.5) * coorW - 0.5
coory = (-v / PI + 0.5) * coorH - 0.5
return np.hstack([coorx[:, None], coory[:, None]])
def mean_percentile(vec, p1=25, p2=75):
vmin = np.percentile(vec, p1)
vmax = np.percentile(vec, p2)
return vec[(vmin <= vec) & (vec <= vmax)].mean()
def vote(vec, tol):
vec = np.sort(vec)
n = np.arange(len(vec))[::-1]
n = n[:, None] - n[None, :] + 1.0
l = squareform(pdist(vec[:, None], 'minkowski', p=1) + 1e-9)
invalid = (n < len(vec) * 0.4) | (l > tol)
if (~invalid).sum() == 0 or len(vec) < tol:
best_fit = np.median(vec)
p_score = 0
else:
l[invalid] = 1e5
n[invalid] = -1
score = n
max_idx = score.argmax()
max_row = max_idx // len(vec)
max_col = max_idx % len(vec)
assert max_col > max_row
best_fit = vec[max_row:max_col+1].mean()
p_score = (max_col - max_row + 1) / len(vec)
l1_score = np.abs(vec - best_fit).mean()
return best_fit, p_score, l1_score
def get_z1(coory0, coory1, z0=50, coorH=512):
v0 = np_coory2v(coory0, coorH)
v1 = np_coory2v(coory1, coorH)
c0 = z0 / np.tan(v0)
z1 = c0 * np.tan(v1)
return z1
def np_refine_by_fix_z(coory0, coory1, z0=50, coorH=512):
'''
Refine coory1 by coory0
coory0 are assumed on given plane z
'''
v0 = np_coory2v(coory0, coorH)
v1 = np_coory2v(coory1, coorH)
c0 = z0 / np.tan(v0)
z1 = c0 * np.tan(v1)
z1_mean = mean_percentile(z1)
v1_refine = np.arctan2(z1_mean, c0)
coory1_refine = (-v1_refine / PI + 0.5) * coorH - 0.5
return coory1_refine, z1_mean
def infer_coory(coory0, h, z0=50, coorH=512):
v0 = np_coory2v(coory0, coorH)
c0 = z0 / np.tan(v0)
z1 = z0 + h
v1 = np.arctan2(z1, c0)
return (-v1 / PI + 0.5) * coorH - 0.5
def get_gpid(coorx, coorW):
gpid = np.zeros(coorW)
gpid[np.round(coorx).astype(int)] = 1
gpid = np.cumsum(gpid).astype(int)
gpid[gpid == gpid[-1]] = 0
return gpid
def get_gpid_idx(gpid, j):
idx = np.where(gpid == j)[0]
if idx[0] == 0 and idx[-1] != len(idx) - 1:
_shift = -np.where(idx != np.arange(len(idx)))[0][0]
idx = np.roll(idx, _shift)
return idx
def gpid_two_split(xy, tpid_a, tpid_b):
m = np.arange(len(xy)) + 1
cum_a = np.cumsum(xy[:, tpid_a])
cum_b = np.cumsum(xy[::-1, tpid_b])
l1_a = cum_a / m - cum_a / (m * m)
l1_b = cum_b / m - cum_b / (m * m)
l1_b = l1_b[::-1]
score = l1_a[:-1] + l1_b[1:]
best_split = score.argmax() + 1
va = xy[:best_split, tpid_a].mean()
vb = xy[best_split:, tpid_b].mean()
return va, vb
def _get_rot_rad(px, py):
if px < 0:
px, py = -px, -py
rad = np.arctan2(py, px) * 180 / np.pi
if rad > 45:
return 90 - rad
if rad < -45:
return -90 - rad
return -rad
def get_rot_rad(init_coorx, coory, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512, tol=5):
gpid = get_gpid(init_coorx, coorW)
coor = np.hstack([np.arange(coorW)[:, None], coory[:, None]])
xy = np_coor2xy(coor, z, coorW, coorH, floorW, floorH)
xy_cor = []
rot_rad_suggestions = []
for j in range(len(init_coorx)):
pca = PCA(n_components=1)
pca.fit(xy[gpid == j])
rot_rad_suggestions.append(_get_rot_rad(*pca.components_[0]))
rot_rad_suggestions = np.sort(rot_rad_suggestions + [1e9])
rot_rad = np.mean(rot_rad_suggestions[:-1])
best_rot_rad_sz = -1
last_j = 0
for j in range(1, len(rot_rad_suggestions)):
if rot_rad_suggestions[j] - rot_rad_suggestions[j-1] > tol:
last_j = j
elif j - last_j > best_rot_rad_sz:
rot_rad = rot_rad_suggestions[last_j:j+1].mean()
best_rot_rad_sz = j - last_j
dx = int(round(rot_rad * 1024 / 360))
return dx, rot_rad
def gen_ww_cuboid(xy, gpid, tol):
xy_cor = []
assert len(np.unique(gpid)) == 4
# For each part seperated by wall-wall peak, voting for a wall
for j in range(4):
now_x = xy[gpid == j, 0]
now_y = xy[gpid == j, 1]
new_x, x_score, x_l1 = vote(now_x, tol)
new_y, y_score, y_l1 = vote(now_y, tol)
if (x_score, -x_l1) > (y_score, -y_l1):
xy_cor.append({'type': 0, 'val': new_x, 'score': x_score})
else:
xy_cor.append({'type': 1, 'val': new_y, 'score': y_score})
# Sanity fallback
scores = [0, 0]
for j in range(4):
if xy_cor[j]['type'] == 0:
scores[j % 2] += xy_cor[j]['score']
else:
scores[j % 2] -= xy_cor[j]['score']
if scores[0] > scores[1]:
xy_cor[0]['type'] = 0
xy_cor[1]['type'] = 1
xy_cor[2]['type'] = 0
xy_cor[3]['type'] = 1
else:
xy_cor[0]['type'] = 1
xy_cor[1]['type'] = 0
xy_cor[2]['type'] = 1
xy_cor[3]['type'] = 0
return xy_cor
def gen_ww_general(init_coorx, xy, gpid, tol):
xy_cor = []
assert len(init_coorx) == len(np.unique(gpid))
# Candidate for each part seperated by wall-wall boundary
for j in range(len(init_coorx)):
now_x = xy[gpid == j, 0]
now_y = xy[gpid == j, 1]
new_x, x_score, x_l1 = vote(now_x, tol)
new_y, y_score, y_l1 = vote(now_y, tol)
u0 = np_coorx2u(init_coorx[(j - 1 + len(init_coorx)) % len(init_coorx)])
u1 = np_coorx2u(init_coorx[j])
if (x_score, -x_l1) > (y_score, -y_l1):
xy_cor.append({'type': 0, 'val': new_x, 'score': x_score, 'action': 'ori', 'gpid': j, 'u0': u0, 'u1': u1, 'tbd': True})
else:
xy_cor.append({'type': 1, 'val': new_y, 'score': y_score, 'action': 'ori', 'gpid': j, 'u0': u0, 'u1': u1, 'tbd': True})
# Construct wall from highest score to lowest
while True:
# Finding undetermined wall with highest score
tbd = -1
for i in range(len(xy_cor)):
if xy_cor[i]['tbd'] and (tbd == -1 or xy_cor[i]['score'] > xy_cor[tbd]['score']):
tbd = i
if tbd == -1:
break
# This wall is determined
xy_cor[tbd]['tbd'] = False
p_idx = (tbd - 1 + len(xy_cor)) % len(xy_cor)
n_idx = (tbd + 1) % len(xy_cor)
num_tbd_neighbor = xy_cor[p_idx]['tbd'] + xy_cor[n_idx]['tbd']
# Two adjacency walls are not determined yet => not special case
if num_tbd_neighbor == 2:
continue
# Only one of adjacency two walls is determine => add now or later special case
if num_tbd_neighbor == 1:
if (not xy_cor[p_idx]['tbd'] and xy_cor[p_idx]['type'] == xy_cor[tbd]['type']) or\
(not xy_cor[n_idx]['tbd'] and xy_cor[n_idx]['type'] == xy_cor[tbd]['type']):
# Current wall is different from one determined adjacency wall
if xy_cor[tbd]['score'] >= -1:
# Later special case, add current to tbd
xy_cor[tbd]['tbd'] = True
xy_cor[tbd]['score'] -= 100
else:
# Fallback: forced change the current wall or infinite loop
if not xy_cor[p_idx]['tbd']:
insert_at = tbd
if xy_cor[p_idx]['type'] == 0:
new_val = np_x_u_solve_y(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
new_type = 1
else:
new_val = np_y_u_solve_x(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
new_type = 0
else:
insert_at = n_idx
if xy_cor[n_idx]['type'] == 0:
new_val = np_x_u_solve_y(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
new_type = 1
else:
new_val = np_y_u_solve_x(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
new_type = 0
new_add = {'type': new_type, 'val': new_val, 'score': 0, 'action': 'forced infer', 'gpid': -1, 'u0': -1, 'u1': -1, 'tbd': False}
xy_cor.insert(insert_at, new_add)
continue
# Below checking special case
if xy_cor[p_idx]['type'] == xy_cor[n_idx]['type']:
# Two adjacency walls are same type, current wall should be differen type
if xy_cor[tbd]['type'] == xy_cor[p_idx]['type']:
# Fallback: three walls with same type => forced change the middle wall
xy_cor[tbd]['type'] = (xy_cor[tbd]['type'] + 1) % 2
xy_cor[tbd]['action'] = 'forced change'
xy_cor[tbd]['val'] = xy[gpid == xy_cor[tbd]['gpid'], xy_cor[tbd]['type']].mean()
else:
# Two adjacency walls are different type => add one
tp0 = xy_cor[n_idx]['type']
tp1 = xy_cor[p_idx]['type']
if xy_cor[p_idx]['type'] == 0:
val0 = np_x_u_solve_y(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
val1 = np_y_u_solve_x(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
else:
val0 = np_y_u_solve_x(xy_cor[p_idx]['val'], xy_cor[p_idx]['u1'])
val1 = np_x_u_solve_y(xy_cor[n_idx]['val'], xy_cor[n_idx]['u0'])
new_add = [
{'type': tp0, 'val': val0, 'score': 0, 'action': 'forced infer', 'gpid': -1, 'u0': -1, 'u1': -1, 'tbd': False},
{'type': tp1, 'val': val1, 'score': 0, 'action': 'forced infer', 'gpid': -1, 'u0': -1, 'u1': -1, 'tbd': False},
]
xy_cor = xy_cor[:tbd] + new_add + xy_cor[tbd+1:]
return xy_cor
def gen_ww(init_coorx, coory, z=50, coorW=1024, coorH=512, floorW=1024, floorH=512, tol=3, force_cuboid=True):
gpid = get_gpid(init_coorx, coorW)
coor = np.hstack([np.arange(coorW)[:, None], coory[:, None]])
xy = np_coor2xy(coor, z, coorW, coorH, floorW, floorH)
# Generate wall-wall
if force_cuboid:
xy_cor = gen_ww_cuboid(xy, gpid, tol)
else:
xy_cor = gen_ww_general(init_coorx, xy, gpid, tol)
# Ceiling view to normal view
cor = []
for j in range(len(xy_cor)):
next_j = (j + 1) % len(xy_cor)
if xy_cor[j]['type'] == 1:
cor.append((xy_cor[next_j]['val'], xy_cor[j]['val']))
else:
cor.append((xy_cor[j]['val'], xy_cor[next_j]['val']))
cor = np_xy2coor(np.array(cor), z, coorW, coorH, floorW, floorH)
cor = np.roll(cor, -2 * cor[::2, 0].argmin(), axis=0)
return cor, xy_cor