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Preface

0.1 First edition
The book notes from J O Hornkohl and extensive scientific discussions and research
engagements in my work at the University of Tennessee Space Institute, Center for
Laser Applications, motivate completion of this ebook. Communication exchanges
occurred since the spring of 1987, and continued regularly until winter 2017 [1]. Over
the years, several colleagues and postgraduate MSc and PhD students have
contributed to applications of fundamental insights in the physics of the diatomic
molecule. Thanks go to David Plemmons, Guoming Guan, Ying-Ling Chen,
Wenhong Qin, Ivan Dors, Alexander Woods, David Surmick, Michael Witte,
Ghaneshwar Gautam, and Christopher Helstern.

Significant emphasis has been placed on the application of the diatomic spectro-
scopy predictions in analysis of experimental data. For this reason, this ebook
includes several chapters on applications in studies of diatomic molecules, especially
important molecules such as cyanide (CN), aluminum monoxide (AlO), diatomic
carbon (C2), titanium monoxide (TiO), hydroxyl (OH), but also selected work on
other diatomic molecules.

This text introduces insights that are essential in utilizing the inherent symmetries
associated with diatomic molecules. Consequently, line positions and strengths
associated with transitions from lower and upper state-manifolds are determined
without invoking approximations that separate vibrations and rotations of diatomic
nuclei from electron motion based on mass. The approach utilized in this work
makes use of the separation of angular coordinates from electronic vibrational
coordinates. Consequently, the volley of selection rules for diatomic spectroscopy is
no longer required, including methodologies that rely on so-called reversed angular
momentum techniques.

This work summarizes well over 30 years of quantitative analysis of temporally
and spatially resolved experimental records, almost all of the experiments discussed
in this ebook were conducted at the Center for Laser Applications (CLA) at the
University of Tennessee Space Institute. Applications include understanding on
nonequilibrium fluid and plasma physics and interpretation of stellar astrophysics
spectra. In several cases of laser-induced plasma investigations, both atomic and
molecular signatures or superposed spectral characteristics from molecules and
atoms can be identified. Analysis of such superposition spectra requires accurate
knowledge of wavelength positions and transition strengths. The revival and
replacement of electrical-spark spectroscopy with laser-spark or laser-plasma
spectroscopy for quantitative elemental composition analysis since the mid-1990s,
viz. laser-induced breakdown spectroscopy (LIBS), extends into increased interests
in molecular LIBS since (give-or-take) the mid-2000s. From an analytical and
practical point of view, the requirements can be reduced to the availability of a set of
diatomic line-strengths in tabular form along with programs that are designed to
appropriately read the records. However, this ebook provides a reasonable account

xvii



of the quantummechanics of the diatomic molecule, along with selected applications
that were important for motivating a consistent approach and for analyzing
recorded data sets from various experiments in the CLA laboratories.

The challenge of this work has been the prediction of spectra with a focus on
diatomic spectroscopy. The aim of the lifetime work of Jim Hornkohl is the design
of an algorithm to predict and fit computed and measured molecular spectra to
provide inferences on parameters such as excitation temperature. The means to
accomplish goals for various diatomic molecules are the consistent application of
standard quantum theory of angular momentum. During his career, Jim engaged in
efforts to overcome techniques such as Van Vleck’s reversed angular momentum
approach based on angular momentum commutators. The apparent difficulties
included the battles with the established practice to predict and compute spectra and
design programs despite the mathematical inconsistencies associated with the
reversed angular momentum practice. The experimental investigations, and again
the stimulating discussions, motivated refinements such as enlarging the data sets for
the CN, C2, or TiO diatomic molecules. In turn, the discussed applications in this
book are intended to alleviate analysis of diatomic spectra composed of super-
positions of a significant amount of transition lines within typical resolution for
laser-plasma emission spectroscopy, to name but one example.

Christian Parigger
August 2019

0.2 Second edition
The second edition includes 10 additional chapters, one on the fundamentals and
nine on the applications parts. Three additional appendices are included, namely:
communication of NMT and BESP scripts for computation of diatomic spectra,
Abel inversion scripts with one specific example, and an appendix on select recent
publications that include C.G.P. as author. The additions primarily address
communication of spatial profiles analyses, including Abel inversion and commu-
nication of scripts for diatomic spectroscopy and Abel inversions. However,
comparisons with other existing databases clearly reveal the significance of the
line strengths for the selected electronic transitions of diatomic molecules. The
comparisons also include a section of C2 laser-induced fluorescence. The existing
databases comparisons include PGOPHER, LIFBASE, and ExoMol databases that
are compared with line-strength data of diatomic molecules of interest, particularly
for laser-induced plasma that is generated in gases and gas mixtures.

• New chapter 2 addresses the foundations of quantum mechanics and the
mathematical implementation of specific symmetries. Application of the
correspondence principle, relating classical and quantum mechanics, leads
to the occurrence of the infamous sign-reversal. This chapter addresses formal
treatment of symmetries in quantum mechanics. Quantum theory contra-
indicates sign changes of the fundamental angular momentum algebra.

Quantum Mechanics of the Diatomic Molecule (Second Edition)
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Reversed angular momentum sign changes are of a heuristic nature and are
actually undesirable in the analysis of diatomic spectra.

• New chapter 15 communicates line-strength data and associated scripts for
the computation and spectroscopic fitting of selected transitions of diatomic
molecules. The scripts for data analysis are designed for inclusion in various
software packages or program languages. Selected results demonstrate the
applicability of the program for data analysis in laser-induced optical break-
down spectroscopy, primarily at the University of Tennessee Space Institute,
Center for Laser Applications. Representative spectra are calculated and
referenced to measured data records. Comparisons of experiment data with
predictions from other tabulated diatomic molecular databases confirm the
accuracy of the communicated line-strength data.

• New chapter 17 discusses cavity ring-down spectroscopy of methylidyne in a
chemiluminescent plasma that is produced in a microwave cavity. Of interest
are the rotational lines of selected vibrational transitions for the A–X and B–
X bands. This chapter also includes recent analysis that shows excellent
agreement of measured and computed data, and it communicates CH line-
strength data. The CH radical is an important diatomic molecule in hydro-
carbon combustion diagnosis and analysis of stellar plasma emissions, to
name just two examples for analytical plasma chemistry.

• New chapter 19 discusses diatomic molecular spectroscopy of laser-induced
plasma and analysis of data records, specifically signatures of cyanide (CN).
Line-strength data from various databases are compared for simulation of the
cyanide spectra. Of interest are recent predictions using an astrophysical
database, i.e., ExoMol, a laser-induced fluorescence database, i.e., LIFBASE,
and a program for simulating rotational, vibrational, and electronic spectra,
i.e., PGOPHER.

• New chapter 21 presents analysis of carbon Swan bands laser-plasma
emission records using line-strength data and the ExoMol database. The
temperature inferences are elaborated when using nonlinear fitting with both
databases. The line-strength data are also utilized for analysis of laser-
induced fluorescence experiments that employ a spectral resolution of the
order of 5 pm. Accurate diatomic carbon databases show many applications
in laboratory diagnosis and interpretation of astrophysical plasma records.

• New chapter 23 elaborates on analysis of aluminum monoxide (AlO), laser-
plasma emission records using line-strength data, and the ExoMol astrophys-
ical database. A nonlinear fitting program computes comparisons of meas-
ured and simulated diatomic molecular spectra. This work also presents a
comparison of the AlO line strength and of ExoMol data for the AlO
diatomic molecule. Accurate AlO databases show a volley of applications in
laboratory and astrophysical plasma diagnosis.

• New chapter 25 applies NMT and BESP scripts for the fitting of recorded
experimental hydroxyl data. The fitting program also incorporates a slight,
overall wavelength offset. The ExoMol and line-strength data yield close
to identical temperature with a slightly different linear background.

Quantum Mechanics of the Diatomic Molecule (Second Edition)
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The databases for specific hydroxyl transition yield similar predictions of the
recorded laser-plasma spectra for time delays of the order of one hundred
microseconds after optical breakdown initiation.

• New chapter 26 communicates measurement and analysis of diatomic
molecular hydroxyl spectra after generation of laser-induced plasma, and it
also shows details of the expanding plasma including associations of shadow-
graphs with spectroscopy. Formation of OH is clearly discernible at time
delays of several dozen microseconds after plasma initiation. Optical emis-
sions are dispersed by a Czerny–Turner spectrometer and an intensified
charge-coupled device records the data along the wavelength and slit
dimensions.

• New chapter 29 combines time-resolved emission spectroscopy with Abel
integral inversion techniques to obtain radial electron density values in laser-
induced plasma. This chapter also includes details of the Abel transforms
Hydrogen beta line profiles are recorded following optical breakdown in
ultra-high-pure hydrogen gas. Asymmetric Abel inversion techniques are
utilized in the analysis of collected, time-resolved data. The averaged, line-of-
sight electron densities are found to be in of the order of one hundredth of an
amagat for time delays close to one-half microseconds. The electron densities
indicate variations across the laser-induced plasma.

• New chapter 30 elucidates the connection of measured shadowgraphs from
optically induced air breakdown with emission spectroscopy in selected gas
mixtures. Spectroscopic analysis explores well-above hypersonic expansion
dynamics using primarily diatomic molecule cyanide and atomic hydrogen
emission spectroscopy. Analysis of the air breakdown and selected gas
breakdown events permits the use of Abel inversion for inference of the
expanding species distribution. Typically, species are prevalent at higher
density near the hypersonically expanding shock wave, measured by tracing
cyanide and a specific carbon atomic line.

• New appendix J presents NMT and BESP MATLAB-scripts for computation
of diatomic spectra.

• New appendix K presents Abel inversion MATLAB-scripts with one specific
example.

• New appendix L summarizes select recent publications that include C.G.P. as
author.

Christian Parigger
February 2024

Reference
[1] Parigger C G and Nemes L 2017 Int. J. Mol. Theor. Phys. 1 00105
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Part I

Fundamentals of the diatomic molecule





IOP Publishing

Quantum Mechanics of the Diatomic Molecule (Second Edition)

Christian G Parigger and James O Hornkohl

Chapter 1

Primer on diatomic spectroscopy

1.1 Overview
This book describes how one uses quantum mechanics to predict the spectra of
diatomic molecules in their gaseous state. The two most important attributes of a
spectral line are its position in the electromagnetic spectrum and the strength with
which the molecule can interact with the radiation field to produce spectral lines.
Thus, a book that discusses the calculation of positions and intensities of spectral
lines of a diatomic molecule equally communicates the application of quantum
theory to the diatomic molecule.

The theoretically convenient measure of spectral line position is its vacuum wave
number nuℓ˜ , which is the difference between the upper term Tu (i.e., upper energy
eigenvalue expressed in the units of cm−1) and the lower term Tℓ,

n = −T T . 1.1uℓ u ℓ˜ ( )

In the optical region, the term difference corresponds to a specific color. However,
experiments usually measure the wavelength positions in a laboratory setting at
standard ambient temperature and pressure. For typical laser spectroscopy inves-
tigations of, say, optical emission spectroscopy subsequent to generation of a laser
spark, spectral resolutions of the instrument spectrometer and detector amount to
0.1–0.01 nm, rarely to 0.001 nm or 1 pm. At the wavelength, λ, of 400 nm, a spectral
resolution, lΔ , of better than 1 pm corresponds to a resolving power, R,

/l l= ΔR 400 000, 1.2( )

or a wave number resolution of better than 0.05 cm−1. The spectral resolution of
diatomic molecular data computed in this book is better than 0.05 cm−1. For laser-
induced optical breakdown experiments, which is a recent application of diatomic
molecular spectroscopy, resolving powers are of the order of 4000–10 000. For high-
resolution, absorption measurements of stellar astrophysical objects, resolving
powers of the order of 40 000 are quite common.
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The theoretically most convenient measure of a molecule’s ability to interact with
electromagnetic radiation is its Condon and Shortley [1] line strength, Suℓ, which
describes transitions between an upper, u, and a lower level, ℓ. The line strength
represents a summation over individual states that comprise upper and lower levels.
Both the vacuum wave number n n=uℓ ℓu˜ ˜ and the line strength =S Suℓ ℓu are
symmetric with regard to the upper and lower levels. In addition, the symbols u
and ℓ represent a collection of quantum numbers. In diatomic spectroscopy, upper
state quantum numbers are normally denoted with a single prime, while lower states
are denoted with the absence of a prime or a double prime. The absence of a double
prime has become the standard way of denoting a lower state diatomic quantum
number.

1.2 Reversed angular momentum
Historically, the reversed-angular-momentum (RAM) methodology has successfully
predicted diatomic spectra without the use of modern digital computers. The RAM
method establishes a reduced set of basis states; in other words, works with an a
priori approximation. Sets of rules are introduced when applying a transformation
to a molecular-fixed from the laboratory-fixed coordinate system. These rules utilize
a supposed reversal of sign in the application of quantum mechanical angular
momentum algebra. This section provides a brief historic account of the challenges
associated with the RAM method.

The reversed-angular momentum approach is mentioned first in an article on the
quantization question of the asymmetric top [2]. Klein writes in the introduction that
the paper might be of interest for methods of quantization. The reversed sign is
introduced for the equations of the components of angular momentum in the
molecular-fixed coordinate system in order to obtain agreement with the well-
established classical equations for the symmetric top. Conversely, the application of
the standard, laboratory-fixed angular momentum equations would lead to the
wrong classical result. This article also makes reference to canonical conjugate Euler
angles that are interpreted as references to dual space.

The RAMmethodology is embraced by Van Vleck in his work on the coupling of
angular momentum vectors in molecules [3]. Notably, Sir Harold Kroto commu-
nicates in his acceptance lecture for the 1996 Nobel Prize in Chemistry, ‘Symmetry,
Space, Stars and C60’ [4], the importance of ’Symmetry, the Key to the Theory of
Everything’. With reference to the RAM work, Sir Kroto quotes Van Vleck:
‘Practically every-one (!) knows that the components of total angular momentum
(NB the angular momentum operator is usually denoted by J and the associated
quantum number by j) of the molecule relative to the axes [x, y, z] fixed in space
satisfy the commutation relation of the form

− =J J J J iJ 1.3x y y x z ( )

Klein discovered the rather surprising fact that when total angular momentum is
referred to axes mounted in the molecule which we will denote by [x’, y’, z’] the sign of
i in the commutation relation is reversed i.e.
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− = −′ ′ ′ ′ ′J J J J iJ 1.4x y y x z ( )

Sir Kroto goes on to say: Does practically everyone know this?—I wondered whether
to check this claim out by asking everyone on the main street in Brighton whether they
did. I hardly knew—or more accurately—really understood the first relation, let alone
the second. However I did know that angular momentum was quantised and governed
by the fundamental relations

〈 〉 = +j J j j 1 1.52 ħ∣ ∣ ( ) ( )

= − … +M j j 1.6J ( )

which means that J has +j2 1 possible orientations, and

Δ = ±j 0, 1 1.7( )

which indicates that when a transition occurs, j may only change by one unit or on
occasion remain unchanged.’ Previously, in 1975 and then in 1992, Sir Kroto
discussed the molecule-fixed angular momentum following Van Vleck [3], leading
to the reversed-angular momentum equations in his Nobel laureate lecture [4] and in
his book on molecular rotation spectra [5].

However, an accurate review shows that there is no reversal of the sign when
moving from a laboratory-fixed to a molecule-fixed coordinate system; in other words,
there is no mathematical support of the reversed sign. Sustenance of the angular
momentum equations can be explained as follows. In terms of classical mechanics,
reversal of motion occurs as one goes from a rotating system to a fixed system, or vice
versa. For example, motion reversal can be experienced by looking at the surround-
ings while on a rotating merry-go-round versus observing the rotation in the fixed
reference frame. The quantum mechanical implementation of motion reversal or time
reversal changes the sign and takes the conjugate complex, leading to the preservation
of the sign. Reference to dual space would confuse things because clearly the standard
angular momentum operator equations are not affected by a transformation from
laboratory-fixed to molecule-fixed coordinates (see appendix A).

A reasonably concise treatment shows preservation of the commutator relations
under a unitary transformation. Consider the operators A, B, and C which satisfy
the commutation formula

− =AB BA iC 1.8( )

and subject these three operators to the unitary transformation U; that is,

′ =A U A U 1.9a( )†

= ′A U A U 1.9b( )†

with similar equations holding for B and C. Then,

− = ′ ′ − ′ ′AB BA U A U U B U U B U U A U 1.10a( )† † † †
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= ′ ′U A B U 1.10b( )†

= iC 1.10c( )

= ′ ′iU C U A B 1.10d( )†

′ = ′ ′ − ′ ′iC A B B A . 1.10e( )

The above result, e.g., see Davydov [6], holds for all commutators, including
those for angular momentum. Thus,

− =′ ′ ′ ′ ′J J J J i J 1.11ax y y x z ( )

− =′ ′ ′ ′ ′J J J J i J 1.11by z z y x ( )

− =′ ′ ′ ′ ′J J J J i J 1.11cz x x z y ( )

In summary, the RAM method is not utilized in this book for the computation of
diatomic molecular spectra. RAM is avoided due, in part, to not needing
approximations thanks to the availability of modern digital computers and due in
part to the mathematical inconsistency of the supposed change of sign, as implied by
the ‘reversed-angular momentum’ descriptive nomenclature.

1.3 Exact diatomic eigenfunction
An exact expression of the diatomic eigenfunction is essential for prediction of
spectra. The major difference between this book and other treatments of the
diatomic molecule is the use of the Wigner–Witmer diatomic eigenfunction [7] in
place of invoking the Born–Oppenheimer approximation [8] from the very beginning
of a theory description. In the Wigner–Witmer approach, angular coordinates are
exactly separated from the electronic–vibrational coordinates. In this book, the
Wigner–Witmer eigenfunction is employed for computation of the vacuum wave
numbers and the rotational line strengths. If one were to instead adopt the Born–
Oppenheimer approximation, then the rotational line strengths would be labeled as
Hönl–London factors. The Born–Oppenheimer approximation breaks the elec-
tronic–vibrational strength into electronic and vibrational parts that correspond
to r-centroids and Franck–Condon factors, and both may be functions of the total
angular momentum in the upper and lower levels.

The expression spectroscopic accuracy refers to the accuracy with which line
position measurements can be performed. Whereas wavelength measurements
having an accuracy of 1 part per million are routinely performed, achieving an
accuracy of 1 part per hundred in the measurement of relative intensities of a group
of spectral lines is fully adequate for many purposes. Thus, one may elect to directly
use the Born–Oppenheimer approximation for many practical calculations of
molecular line intensity; namely, approximating the diatomic eigenfunction as a
product of electronic, vibrational, and rotational factors. However, the Born–
Oppenheimer approximation cannot produce diatomic term values with

Quantum Mechanics of the Diatomic Molecule (Second Edition)

1-4



spectroscopic accuracy without generalization. To achieve spectroscopic accuracy
within the Born–Oppenheimer approximation, one must include sums over the
many electronic states of the molecule and sums over the many vibrational states of
each electronic state. Van Vleck transformations [9] or other mathematical proce-
dures reduce the dimension of the Hamiltonian matrix prior to numerically
diagonalization [10–15].

In this book, only one diatomic selection rule is used. A spectral line, i.e., a term
difference, is allowed if the angular momentum part of its line strength is non-
vanishing. However, a modification of the line strength computation is required if
the diatomic molecule in question is homonuclear, i.e., the two nuclei are identical.
An unresolved hyperfine structure in the spectrum of a homonuclear molecule causes
states of positive parity and negative parity to have different nuclear spin statistical
weights, +g and −g . If the nuclear spin is zero, then either +g or −g will be zero. Thus,
exchange symmetry, the symmetry associated with the exchange of identical
particles, rigorously forbids certain spectral lines, even when the rotational line
strength is nonzero. However, if the rotational line strength factor vanishes, then the
spectral line is rigorously forbidden.

1.4 Computation of diatomic spectra
The required steps for computation of spectra can be summarized as follows:

• An angular momentum momentum coupling model must be chosen because
angular momentum theory does not tell us how the total angular momentum
is formed from the orbital and spin momenta.

• The eigenfunctions for everything in the system except the total angular
momentum are computed.

• With the eigenfunctions obtained in the previous step and the chosen angular
momentum coupling model, upper and lower Hamiltonians are computed
and diagonalized.

• From the orthogonal matrices that diagonalize the upper and lower
Hamiltonians, the line strengths are computed for various possible types of
transitions, e.g., electric dipole, magnetic dipole, electric quadrupole, etc.
Typically, one knows precisely what type of transition dominates in the
spectrum, but this is not invariably the case.

• The nonvanishing of the rotational angular momentum part of the line
strength selects the subset of allowed spectral lines from the computed term
differences.

Consequently, the minimal information required for computation of a spectrum
includes selected term differences nuℓ˜ and the computed line strengths Suℓ. A
description of a diatomic molecule having N electrons and residing in field free
space requires +N3 6 spatial or angular coordinates, the time t, N electronic spin
variables, and two nuclear spin variables. In the case of the diatomic molecule, the
only exactly separable variables are the time t, the coordinates of the total mass, and
three Euler angles which describe the total angular momentum. The Wigner–Witmer
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diatomic eigenfunction provides the exact separation of three Euler angles, but N3
internal spatial coordinates and the numerous spins remain. Unless the number of
electrons N is very small, the diatomic problem remains unsolvable with spectro-
scopic accuracy because there are N3 independent variables that cannot be treated
with mathematical exactness.

Despite the challenges mentioned in the previous paragraph, one can, with two
stringent caveats, apply the above algorithm to the diatomic molecule. The first
caveat is that one must have extensive experimentally recorded wave number tables,
n ′J J,uℓ

exp˜ ( ), versus upper and lower total angular momenta, ′J and J, respectively,
for many vibrational bands in the spectrum of a molecule of interest. The second
caveat is associated with using trial values of semiempirical molecular parameters
for each vibrational level, v, such as Bv,Dv, Av,lv, gv, and so on. One computes term
differences, n ′J J,uℓ˜ ( ), from numerically diagonalized upper and lower
Hamiltonians, calculates corrections to the trial values of the parameters from
differences n n′ − ′J J J J, ,uℓ uℓ

exp˜ ( ) ˜ ( ), and iterates the computations until the errors in
the computed line positions are comparable to the estimated errors in the
experimental line positions. When successful, this procedure yields working models
for the upper and lower Hamiltonians and sets of molecular parameters that predict
the measured line positions.

The practical significance of molecular parameters was their appearance in term
value equations, semiempirical equations with which one can compute the upper Tu

and lower Tℓ terms, and thereby the vacuum wave number nuℓ˜ . Herzberg [16] gives
many examples of term value equations, but note that when Herzberg wrote his
book the numerical diagonalization of thousands of matrices was impractical. The
current significance of the molecular parameters is that they can be used to compute
diatomic Hamiltonian matrix representations in one of the Hund’s bases.

In this book the computation of n ′J J,uℓ˜ ( ) and ′S J J,uℓ( ) is based upon the
Wigner–Witmer diatomic eigenfunction instead of the eigenfunction associated with
the Born–Oppenheimer approximation, but computations of the electronic–vibra-
tional strengths utilize separation of electronic from vibrational contributions
familiar from the Born–Oppenheimer approximation.
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