
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 172.69.6.71

This content was downloaded on 21/10/2024 at 04:29

Please note that terms and conditions apply.

You may also like:

SERS-Based Advanced Diagnostics for Infectious Diseases

Artificial Intelligence and Spectroscopic Techniques for Gemology Applications

International Organizing Committee of the FAPM-2019:

https://iopscience.iop.org/page/terms
https://iopscience.iop.org/book/edit/978-0-7503-5920-7
https://iopscience.iop.org/book/edit/978-0-7503-3927-8
https://iopscience.iop.org/article/10.1088/1742-6596/1705/1/011003


Part I

Fundamentals of the diatomic molecule
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Chapter 1

Primer on diatomic spectroscopy

1.1 Overview
This book describes how one uses quantum mechanics to predict the spectra of
diatomic molecules in their gaseous state. The two most important attributes of a
spectral line are its position in the electromagnetic spectrum and the strength with
which the molecule can interact with the radiation field to produce spectral lines.
Thus, a book that discusses the calculation of positions and intensities of spectral
lines of a diatomic molecule equally communicates the application of quantum
theory to the diatomic molecule.

The theoretically convenient measure of spectral line position is its vacuum wave
number nuℓ˜ , which is the difference between the upper term Tu (i.e., upper energy
eigenvalue expressed in the units of cm−1) and the lower term Tℓ,

n = −T T . 1.1uℓ u ℓ˜ ( )

In the optical region, the term difference corresponds to a specific color. However,
experiments usually measure the wavelength positions in a laboratory setting at
standard ambient temperature and pressure. For typical laser spectroscopy inves-
tigations of, say, optical emission spectroscopy subsequent to generation of a laser
spark, spectral resolutions of the instrument spectrometer and detector amount to
0.1–0.01 nm, rarely to 0.001 nm or 1 pm. At the wavelength, λ, of 400 nm, a spectral
resolution, lΔ , of better than 1 pm corresponds to a resolving power, R,

/l l= ΔR 400 000, 1.2( )

or a wave number resolution of better than 0.05 cm−1. The spectral resolution of
diatomic molecular data computed in this book is better than 0.05 cm−1. For laser-
induced optical breakdown experiments, which is a recent application of diatomic
molecular spectroscopy, resolving powers are of the order of 4000–10 000. For high-
resolution, absorption measurements of stellar astrophysical objects, resolving
powers of the order of 40 000 are quite common.
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The theoretically most convenient measure of a molecule’s ability to interact with
electromagnetic radiation is its Condon and Shortley [1] line strength, Suℓ, which
describes transitions between an upper, u, and a lower level, ℓ. The line strength
represents a summation over individual states that comprise upper and lower levels.
Both the vacuum wave number n n=uℓ ℓu˜ ˜ and the line strength =S Suℓ ℓu are
symmetric with regard to the upper and lower levels. In addition, the symbols u
and ℓ represent a collection of quantum numbers. In diatomic spectroscopy, upper
state quantum numbers are normally denoted with a single prime, while lower states
are denoted with the absence of a prime or a double prime. The absence of a double
prime has become the standard way of denoting a lower state diatomic quantum
number.

1.2 Reversed angular momentum
Historically, the reversed-angular-momentum (RAM) methodology has successfully
predicted diatomic spectra without the use of modern digital computers. The RAM
method establishes a reduced set of basis states; in other words, works with an a
priori approximation. Sets of rules are introduced when applying a transformation
to a molecular-fixed from the laboratory-fixed coordinate system. These rules utilize
a supposed reversal of sign in the application of quantum mechanical angular
momentum algebra. This section provides a brief historic account of the challenges
associated with the RAM method.

The reversed-angular momentum approach is mentioned first in an article on the
quantization question of the asymmetric top [2]. Klein writes in the introduction that
the paper might be of interest for methods of quantization. The reversed sign is
introduced for the equations of the components of angular momentum in the
molecular-fixed coordinate system in order to obtain agreement with the well-
established classical equations for the symmetric top. Conversely, the application of
the standard, laboratory-fixed angular momentum equations would lead to the
wrong classical result. This article also makes reference to canonical conjugate Euler
angles that are interpreted as references to dual space.

The RAMmethodology is embraced by Van Vleck in his work on the coupling of
angular momentum vectors in molecules [3]. Notably, Sir Harold Kroto commu-
nicates in his acceptance lecture for the 1996 Nobel Prize in Chemistry, ‘Symmetry,
Space, Stars and C60’ [4], the importance of ’Symmetry, the Key to the Theory of
Everything’. With reference to the RAM work, Sir Kroto quotes Van Vleck:
‘Practically every-one (!) knows that the components of total angular momentum
(NB the angular momentum operator is usually denoted by J and the associated
quantum number by j) of the molecule relative to the axes [x, y, z] fixed in space
satisfy the commutation relation of the form

− =J J J J iJ 1.3x y y x z ( )

Klein discovered the rather surprising fact that when total angular momentum is
referred to axes mounted in the molecule which we will denote by [x’, y’, z’] the sign of
i in the commutation relation is reversed i.e.
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− = −′ ′ ′ ′ ′J J J J iJ 1.4x y y x z ( )

Sir Kroto goes on to say: Does practically everyone know this?—I wondered whether
to check this claim out by asking everyone on the main street in Brighton whether they
did. I hardly knew—or more accurately—really understood the first relation, let alone
the second. However I did know that angular momentum was quantised and governed
by the fundamental relations

〈 〉 = +j J j j 1 1.52 ħ∣ ∣ ( ) ( )

= − … +M j j 1.6J ( )

which means that J has +j2 1 possible orientations, and

Δ = ±j 0, 1 1.7( )

which indicates that when a transition occurs, j may only change by one unit or on
occasion remain unchanged.’ Previously, in 1975 and then in 1992, Sir Kroto
discussed the molecule-fixed angular momentum following Van Vleck [3], leading
to the reversed-angular momentum equations in his Nobel laureate lecture [4] and in
his book on molecular rotation spectra [5].

However, an accurate review shows that there is no reversal of the sign when
moving from a laboratory-fixed to a molecule-fixed coordinate system; in other words,
there is no mathematical support of the reversed sign. Sustenance of the angular
momentum equations can be explained as follows. In terms of classical mechanics,
reversal of motion occurs as one goes from a rotating system to a fixed system, or vice
versa. For example, motion reversal can be experienced by looking at the surround-
ings while on a rotating merry-go-round versus observing the rotation in the fixed
reference frame. The quantum mechanical implementation of motion reversal or time
reversal changes the sign and takes the conjugate complex, leading to the preservation
of the sign. Reference to dual space would confuse things because clearly the standard
angular momentum operator equations are not affected by a transformation from
laboratory-fixed to molecule-fixed coordinates (see appendix A).

A reasonably concise treatment shows preservation of the commutator relations
under a unitary transformation. Consider the operators A, B, and C which satisfy
the commutation formula

− =AB BA iC 1.8( )

and subject these three operators to the unitary transformation U; that is,

′ =A U A U 1.9a( )†

= ′A U A U 1.9b( )†

with similar equations holding for B and C. Then,

− = ′ ′ − ′ ′AB BA U A U U B U U B U U A U 1.10a( )† † † †

Quantum Mechanics of the Diatomic Molecule (Second Edition)

1-3



= ′ ′U A B U 1.10b( )†

= iC 1.10c( )

= ′ ′iU C U A B 1.10d( )†

′ = ′ ′ − ′ ′iC A B B A . 1.10e( )

The above result, e.g., see Davydov [6], holds for all commutators, including
those for angular momentum. Thus,

− =′ ′ ′ ′ ′J J J J i J 1.11ax y y x z ( )

− =′ ′ ′ ′ ′J J J J i J 1.11by z z y x ( )

− =′ ′ ′ ′ ′J J J J i J 1.11cz x x z y ( )

In summary, the RAM method is not utilized in this book for the computation of
diatomic molecular spectra. RAM is avoided due, in part, to not needing
approximations thanks to the availability of modern digital computers and due in
part to the mathematical inconsistency of the supposed change of sign, as implied by
the ‘reversed-angular momentum’ descriptive nomenclature.

1.3 Exact diatomic eigenfunction
An exact expression of the diatomic eigenfunction is essential for prediction of
spectra. The major difference between this book and other treatments of the
diatomic molecule is the use of the Wigner–Witmer diatomic eigenfunction [7] in
place of invoking the Born–Oppenheimer approximation [8] from the very beginning
of a theory description. In the Wigner–Witmer approach, angular coordinates are
exactly separated from the electronic–vibrational coordinates. In this book, the
Wigner–Witmer eigenfunction is employed for computation of the vacuum wave
numbers and the rotational line strengths. If one were to instead adopt the Born–
Oppenheimer approximation, then the rotational line strengths would be labeled as
Hönl–London factors. The Born–Oppenheimer approximation breaks the elec-
tronic–vibrational strength into electronic and vibrational parts that correspond
to r-centroids and Franck–Condon factors, and both may be functions of the total
angular momentum in the upper and lower levels.

The expression spectroscopic accuracy refers to the accuracy with which line
position measurements can be performed. Whereas wavelength measurements
having an accuracy of 1 part per million are routinely performed, achieving an
accuracy of 1 part per hundred in the measurement of relative intensities of a group
of spectral lines is fully adequate for many purposes. Thus, one may elect to directly
use the Born–Oppenheimer approximation for many practical calculations of
molecular line intensity; namely, approximating the diatomic eigenfunction as a
product of electronic, vibrational, and rotational factors. However, the Born–
Oppenheimer approximation cannot produce diatomic term values with
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spectroscopic accuracy without generalization. To achieve spectroscopic accuracy
within the Born–Oppenheimer approximation, one must include sums over the
many electronic states of the molecule and sums over the many vibrational states of
each electronic state. Van Vleck transformations [9] or other mathematical proce-
dures reduce the dimension of the Hamiltonian matrix prior to numerically
diagonalization [10–15].

In this book, only one diatomic selection rule is used. A spectral line, i.e., a term
difference, is allowed if the angular momentum part of its line strength is non-
vanishing. However, a modification of the line strength computation is required if
the diatomic molecule in question is homonuclear, i.e., the two nuclei are identical.
An unresolved hyperfine structure in the spectrum of a homonuclear molecule causes
states of positive parity and negative parity to have different nuclear spin statistical
weights, +g and −g . If the nuclear spin is zero, then either +g or −g will be zero. Thus,
exchange symmetry, the symmetry associated with the exchange of identical
particles, rigorously forbids certain spectral lines, even when the rotational line
strength is nonzero. However, if the rotational line strength factor vanishes, then the
spectral line is rigorously forbidden.

1.4 Computation of diatomic spectra
The required steps for computation of spectra can be summarized as follows:

• An angular momentum momentum coupling model must be chosen because
angular momentum theory does not tell us how the total angular momentum
is formed from the orbital and spin momenta.

• The eigenfunctions for everything in the system except the total angular
momentum are computed.

• With the eigenfunctions obtained in the previous step and the chosen angular
momentum coupling model, upper and lower Hamiltonians are computed
and diagonalized.

• From the orthogonal matrices that diagonalize the upper and lower
Hamiltonians, the line strengths are computed for various possible types of
transitions, e.g., electric dipole, magnetic dipole, electric quadrupole, etc.
Typically, one knows precisely what type of transition dominates in the
spectrum, but this is not invariably the case.

• The nonvanishing of the rotational angular momentum part of the line
strength selects the subset of allowed spectral lines from the computed term
differences.

Consequently, the minimal information required for computation of a spectrum
includes selected term differences nuℓ˜ and the computed line strengths Suℓ. A
description of a diatomic molecule having N electrons and residing in field free
space requires +N3 6 spatial or angular coordinates, the time t, N electronic spin
variables, and two nuclear spin variables. In the case of the diatomic molecule, the
only exactly separable variables are the time t, the coordinates of the total mass, and
three Euler angles which describe the total angular momentum. The Wigner–Witmer
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diatomic eigenfunction provides the exact separation of three Euler angles, but N3
internal spatial coordinates and the numerous spins remain. Unless the number of
electrons N is very small, the diatomic problem remains unsolvable with spectro-
scopic accuracy because there are N3 independent variables that cannot be treated
with mathematical exactness.

Despite the challenges mentioned in the previous paragraph, one can, with two
stringent caveats, apply the above algorithm to the diatomic molecule. The first
caveat is that one must have extensive experimentally recorded wave number tables,
n ′J J,uℓ

exp˜ ( ), versus upper and lower total angular momenta, ′J and J, respectively,
for many vibrational bands in the spectrum of a molecule of interest. The second
caveat is associated with using trial values of semiempirical molecular parameters
for each vibrational level, v, such as Bv,Dv, Av,lv, gv, and so on. One computes term
differences, n ′J J,uℓ˜ ( ), from numerically diagonalized upper and lower
Hamiltonians, calculates corrections to the trial values of the parameters from
differences n n′ − ′J J J J, ,uℓ uℓ

exp˜ ( ) ˜ ( ), and iterates the computations until the errors in
the computed line positions are comparable to the estimated errors in the
experimental line positions. When successful, this procedure yields working models
for the upper and lower Hamiltonians and sets of molecular parameters that predict
the measured line positions.

The practical significance of molecular parameters was their appearance in term
value equations, semiempirical equations with which one can compute the upper Tu

and lower Tℓ terms, and thereby the vacuum wave number nuℓ˜ . Herzberg [16] gives
many examples of term value equations, but note that when Herzberg wrote his
book the numerical diagonalization of thousands of matrices was impractical. The
current significance of the molecular parameters is that they can be used to compute
diatomic Hamiltonian matrix representations in one of the Hund’s bases.

In this book the computation of n ′J J,uℓ˜ ( ) and ′S J J,uℓ( ) is based upon the
Wigner–Witmer diatomic eigenfunction instead of the eigenfunction associated with
the Born–Oppenheimer approximation, but computations of the electronic–vibra-
tional strengths utilize separation of electronic from vibrational contributions
familiar from the Born–Oppenheimer approximation.
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