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Appendix A

Review of angular momentum commutators

The customary starting point for the quantum theory of angular momentum is the
commutation formula for the Cartesian components of the angular momentum
operator J,

e− = iJ J J J J A.1i j j i ijk k ( )

where

e =
+
−

i j k
i j k

1 , , in cyclic order
1 , , not in cyclic order
0 if any indices equal

. A.2ijk ( )
⎧

⎨
⎩

The above commutator property usually defines the angular momentum operator.
Coordinate transformations leave the angular momentum operator definition
invariant. The conservation law for angular momentum is fundamental. The
definition of angular momentum, equation (A.1), is, of course, invariant under
specifically spatial translations and rotations. Furthermore, equation (A.1) is
invariant under coordinate inversion and time reversal.

Van Vleck’s reversed angular momentum method starts with equation (A.1) but
then utilizes change of sign of i for angular momentum when a transformation of
coordinates to a system attached to a rotating molecule is made,

e− = −′ ′ ′ ′ ′ ′ ′ ′iJ J J J J . A.3i j j i i j k k ( )

Here, the primed index denotes a rotated coordinate. This equation containing the
reversed sign of i is known as Klein’s [1] anomalous commutation formula.

Two approaches are debated in this book, namely an operator and an algebraic
approach [2], without utilizing Klein’s anomalous commutation formula. Each
approach begins with the standard commutator formula (equation (A.1)). The
operator approach is included in the text, the algebraic approach is discussed in
detail in this appendix. In principle, equation (A.3) can be utilized in building
angular momentum theory. However, in analogy to the distinction between
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right- and left-handed coordinate systems, different signs occur. We only use the
standard sign as indicated in equation (A.1) in computation of a molecular
diatomic spectrum [3], i.e., without resorting to use of Klein’s anomaly and Van
Vleck’s reversed angular momentum method.

Here, the reversal of the sign in equation (A.1) is briefly investigated for a unitary
and an anti-unitary transformation. The Euler rotation matrix is a real, unitary
matrix (see equation (A.5)). The determinate of the Euler rotation matrix is +1
meaning that the sign of vectors is preserved under rotations. A spatial rotation of
coordinates is a proper transformation. Conversely, the inversion or parity operator
constitutes an improper rotation—this transformation cannot be described exclu-
sively in terms of the Euler angles. However, angular momentum is a pseudo or axial
vector, preserving the sign of J under improper rotations. The parity operator is also
unitary and equation (A.1) is preserved by the parity operator. Time reversal (time
inversion or reversal of motion) changes the sign of J and it complex-conjugates the
imaginary unit due to time reversal being anti-unitary. Thus, equation (A.1) is
invariant under time reversal. As shown in texts (e.g., Messiah [4]), the time reversal
operator has been designed to be anti-unitary, consequently preserving the sign of i
in commutation formulae.

An algebraic approach reveals that the commutator equation equation (A.1)
remains invariant when proper rotation of coordinates is applied. Standard
Cartesian coordinates are employed in the particular representation of the rotation
matrix, the use of spherical polar coordinates would yield the same results. The
laboratory referenced J is transformed to the rotated coordinate system by
application of the rotation matrix abgD( ),

abg′ =J D J, A.4( ) ( )

where α, β, and γ are the Euler angles and abgD( ) is an orthogonal matrix whose
determinant is +1, Goldstein [5],

abg
a b g a g a b g a g b g
a b g a g a b g a g b g

a b a b b
=

− + −
− − − +D

cos cos cos sin sin sin cos cos cos sin sin cos
cos cos sin sin cos sin cos sin cos cos sin sin

cos sin sin sin cos

. A.5( ) ( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

The Euler angles and the matrix abgD( ) used here are those normally used in
quantum mechanics, such as by Messiah [4], Davydov [6], Goldstein [5], Rose [7],
Brink and Satchler [8], Tinkham [9], Gottfried [10], Baym [11], and Shore and Menzel
[12]. This same set of Euler angles is also used by some authors of books on the theory
of diatomic spectra, such as Judd [13] and Mizushima [14]. Evaluation of the angular
momentum commutation formulae in the rotated system of coordinates gives

e− =′ ′ ′ ′ ′ ′ ′ ′iJ J J J J . A.6i j j i i j k k ( )

This result is obtained from equations (A.1), (A.4), and (A.5). The calculation is
simplified somewhat if one notes that for an orthogonal matrix the cofactors, i.e.,
signed minor determinants, are equal to the corresponding matrix elements of

abgD( ) labeled mij, i.e., mij is its own cofactor. For example,
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− = − −

+ − −

+ − −

′ ′ ′ ′J J J J i m m m m J J J J

m m m m J J J J

m m m m J J J J ,

A.7
x y y x y z z y

x z z x

x y y x

12 23 13 22

13 21 11 23

11 22 12 21

( )( )
( )( )
( )( )

( )
⎡⎣

⎤⎦

and since

− =
− = −
− =

m m m m m
m m m m m
m m m m m

,
,

,
A.8

12 23 13 22 31

13 21 11 23 32

11 22 12 21 33

( )

the right-hand side of equation (A.6) reduces to ′iJz .
The review of Klein’s [1] anomalous formula concludes that reversal of the sign of

the sign is not required in diatomic molecular spectroscopy. The anomalous sign in
the angular momentum commutators does not reveal a novel aspect of the nature of
diatomic molecules. It is noteworthy that the anomalous commutation formula
remains today a time-honored tradition in the theory of molecular spectra, as
evidenced in several references [10–22]. Klein’s anomalous commutators are means
by which matrix elements of various operators in the molecular Hamiltonian are
obtained, in particular those expressed in terms of angular momentum raising and
lowering operators.
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Appendix B

Effects of raising and lowering operators

This appendix addresses details of the effects of raising and lowering operators on
standard states 〉JM∣ and on elements of the rotation matrix abgΩ

*DM
J ( ) [1]. The

angular momentum raising and lowering operators have the following effects on the
standard 〉JM∣ states,

〉 = ± 〉± ±J JM C J M J M, , 1 , B.1∣ ( ) ∣ ( )

where



= + − ±

= ± −

±C J M J J M M

J M J M

, 1 1

1 .
B.2

( ) ( ) ( )

( )( )
( )

This general equation is, of course, applicable to the diatomic molecule. However, as
a result of approximation, one deals with approximate diatomic eigenfunctions.
Contained in Van Vleck’s method is his discovery that the above standard results are
not directly applicable to approximate diatomic eigenfunctions. Typically, two
magnetic quantum numbers occur for approximate diatomic eigenfunctions, M and
Ω in Hund’s case (a) or MN and Λ in case (b).

In modern notation, approximate diatomic angular momentum states are
represented by elements of the rotation matrix, abgΩ

*DM
J ( ), which carry two

magnetic quantum numbers, one more than allowed by the nature of angular
momentum. Only J2 and one of its components, by usual convention Jz, commute
with the Hamiltonian. It will be important in our approach to find the effects of the
raising and lowering operators on elements of the rotation matrix while applying
standard theory.

The rotated raising operator, ′+J ,

′ = ++ ′ ′J J iJ , B.3x y ( )

lowers the Ω quantum number on Hund’s case (a) states; see, for example, Van Vleck
[2], Judd [3], Mizushima [4], Freed [5], Kovacs [6], Hougen [7], Carrington et al [8],
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Zare et al [9], Brown and Howard [10], and Lefebvre-Brion and Field [11]. Similarly,
the rotated raising operator ′+N lowers the Λ quantum number on case (b) kets.
Agreement between eigenvalues of Hamiltonian matrices built using these results
and experimentally measured term values has firmly established their correctness.
Klein’s anomalous commutators are often referenced in debating the reason why ′+J
lowers Ω and why ′+N lowers Λ. However, of interest will be the following equation

 abg abg′ = − Ω± Ω Ω
* *J D C J D, , B.4M

J
M
J

, 1( ) ( ) ( ) ( )

which will be derived below. Note that ′+J lowers Ω, that ′−J raises Ω, and that an
unexpected minus sign occurs.

The nature of angular momentum does not allow M and Ω both to be rigorously
good quantum numbers. This is equivalent to stating that Jz and ′Jz do not commute.
According to definition of angular momentum, Jz does not commute with Jx or Jy,
but it is, perhaps, not obvious that Jz and ′Jz fail to commute. One can easily show,
Gottfried [12], that

b= b′J J i J, sin B.5z z[ ] ( ) ( )

b a a= − +i J Jsin sin cos . B.6x y( )[ ( ) ( ) ] ( )

where / b= ∂ ∂bJ is the angular momentum operator for rotation about the first
intermediate y-axis. In general, Jz and ′Jz do not commute. Thus, abgΩ

*DM
J

, ( ) cannot
represent a state of angular momentum of a molecule or any other system. The
rotation matrix connects two different states of angular momentum.

B.1 Angular momentum operators
Angular momentum operator representations in terms of Euler angles are elabo-
rated. A rotation provides a particularly simple way of expressing a component of
angular momentum. The three Euler rotations give the following three components:

a
= −

∂
∂

=aJ i J , B.7z ( )

b
= −

∂
∂

bJ i , B.8( )

g
= −

∂
∂

=g ′J i J . B.9z ( )

Each of these operators is referenced to a different coordinate system, i.e., =aJ Jz

in the laboratory system, =bJ Jy1
in the first intermediate system, and =g ′J Jz in

the fully rotated system. Applying the first Euler rotation to the vector operator J
results in
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a a
a a= −

J
J

J

J
J

J

cos sin 0
sin cos 0
0 0 1

. B.10
x

y

z

x

y

z

1

1

1

( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

From this one finds

a a= = − +bJ J J Jsin cos , B.11y x y1
( )

giving bJ in terms of the laboratory coordinates of J. Similarly, using the full
rotation matrix, equation (A.4), one can express gJ in laboratory coordinate system,

abg′ = DJ J, B.12( ) ( )

a b a b b= = + +g a′J J J J Jcos sin sin sin cos , B.13z x y ( )

where the substitution = aJ Jz has been made. Equations (B.11) and (B.13) can be
inverted for Jx and Jy:

a b
a

a
b

a
b g

= − −
∂

∂
−

∂
∂

+
∂

∂
J i cos cot sin

cos
sin

, B.14x ( )⎜ ⎟
⎛
⎝

⎞
⎠

a b
a

a
b

a
b g

= − −
∂

∂
+

∂
∂

+
∂

∂
J i sin cot cos

sin
sin

, B.15y ( )⎜ ⎟
⎛
⎝

⎞
⎠

g
= −

∂
∂

J i . B.16z ( )

The method in obtaining these results included evaluation of bJ and gJ in terms of the
laboratory components of J. Similarly, ′Jx , ′Jy , and ′Jz can be obtained by expressing

aJ and bJ in terms of the components of ′J . The inverse of the full rotation matrix is
applied to the rotated vector ′J ,

abg abg= ′ = ′−D DJ J J , B.171( ) ( ) ( )†

to find aJ in terms of the rotated coordinates of J,

b g b g b= = − + +a g′ ′J J J J Jsin cos sin sin cos . B.18z x y ( )

The Euler β-rotation is taken about the first intermediate y-axis meaning that the
first intermediate and second intermediate y-axes coincide. Thus, bJ can be evaluated
in fully rotated coordinates by applying the inverse of the γ rotation matrix to ′J ,

g g
g g=

− ′

′

′

J
J

J

J
J

J

cos sin 0
sin cos 0

0 0 1

. B.19
x

y

z

x

y

zz

2

2 ( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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= = bJ J Jy y2 1
; therefore, we find

g g= +b ′ ′J J Jsin cos . B.20x y ( )

The two equations in two unknowns are inverted as before. We find for ′Jx and ′Jy

g b
g

g
b

g
b a

= −
∂

∂
+

∂
∂

−
∂

∂
′J i cos cot sin

cos
sin

, B.21x ( )⎜ ⎟
⎛
⎝

⎞
⎠

g b
g

g
b

g
b a

= − −
∂

∂
+

∂
∂

+
∂

∂
′J i sin cot cos

sin
sin

, B.22y ( )⎜ ⎟
⎛
⎝

⎞
⎠

g
= −

∂
∂

′J i . B.23z ( )

The raising and lowering operators are then constructed using the results above,

b
a b b g

= − −
∂

∂
+

∂
∂

+
∂

∂
a

+J ie icot
1

sin
, B.24i ( )⎜ ⎟

⎛
⎝

⎞
⎠

b
a b b g

= − −
∂

∂
−

∂
∂

+
∂

∂
a

−
−J ie icot

1
sin

, B.25i ( )⎜ ⎟
⎛
⎝

⎞
⎠

b
g b b a

= −
∂

∂
+

∂
∂

−
∂

∂
g

+′
−J ie icot

1
sin

, B.26i ( )⎜ ⎟
⎛
⎝

⎞
⎠

b
g b b a

= −
∂

∂
−

∂
∂

−
∂

∂
g

−′J ie icot
1

sin
. B.27i ( )⎜ ⎟

⎛
⎝

⎞
⎠

These general results also apply to systems composed of any number of particles. A
modification or better simplification is required for a system consisting of a single
particle (or two particles, since the two-body reduction can always be applied to a
system of two particles). The third Euler angle, γ, is superfluous for a single particle,
i.e., / g∂ ∂ = 0. Choosing the first Euler angle to be azimuthal angle f and the second
Euler angle to be the polar angle θ, the equations (B.14)-(B.16)) reduce to the familiar
textbook equations for the angular momentum operators of a single particle.

Comparison of equations (B.14)–(B.16)) with equations (B.14–B.16) shows that
the components of angular momentum are changed by a coordinate transformation.
However, the defining commutators for angular momentum in terms of its Cartesian
components remain invariant, although the individual components differ. We note
that equations (B.7), (B.24), and (B.25) agree with Judd’s [3] equation (1.22), but
(B.9), (B.26), and (B.27) differ in sign from Judd’s equation (1.23), presumably due
to the use of the anomalous commutator formula. It appears that Judd obtained his
rotated operators in a manner which guaranteed they would obey Klein’s anom-
alous commutation formula.
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B.2 Angular momentum commutators and rotation matrix
elements

General relations for commutators are typically obtained by applying the commu-
tator to an abstract ket describing a physical state. Alternatively, in the Schrödinger
representation, the commutators are obtained by applying differential operators to
physical eigenfunctions. This appendix demonstrates how two anomalous results
may occur when applying ′ ′J J,x y[ ] and ′J J,y y[ ] to the rotation matrix elements

abgΩ
*DM

J ( ).
The commutator ′ ′J J,x y[ ] is evaluated using

= ′ + ′ ′ − ′ = − ′ ′′ ′ + − + − − +J J J J
i

J J
i

J J,
1
2

,
1
2 2

, , B.28x y ( ) ( )[ ] ( )⎡
⎣

⎤
⎦ ⎡⎣ ⎤⎦

and equation (B.4) which for convenience is repeated here

 abg abg′ = − Ω± Ω Ω
* *J D C J D, . B.29M

J
M
J

, 1( ) ( ) ( ) ( )

Successive application of the operators in the rotated frame of reference yields the
intermediate result

′ ′ abg abg− = − Ω − Ω − Ω + Ω− + Ω + − − + Ω* *
i

J J D
i

C J C J C J C J D
2

,
2

, 1 , , 1 , , B.30M
J

M
J( ) ( ( ) ( ) ( ) ( )) ( ) ( )⎡⎣ ⎤⎦

which after inserting (compare equation (B.2))

Ω = Ω ± Ω +±C J J J, 1 , B.31( ) ( )( ) ( )

leads to

abg abg= − Ω′ ′ Ω Ω
* *J J D i D, . B.32x y M

J
M
J[ ] ( ) ( ) ( )

It might be tempting to conclude anomalous commutator relations in the rotated
molecular frame from this identity. However, the rotation matrix elements contain
two quantum numbers M and Ω, one too many to represent a physical
eigenfunction.

Similarly, ′J J,y y[ ] is evaluated using

= − ′ − ′ + ′ + ′′ + + − − + − − +J J J J J J J J J J,
1
4

,
1
4

,
1
4

,
1
4

, , B.33y y[ ] ( )⎛
⎝ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦⎞

⎠

and applying it to the rotation matrix elements abgΩ
*DM

J ( ). Note ′Jy acts on Ω (see
equations (B.29)) while Jy acts on M,

abg abg=± Ω ± ± Ω
* *J D C J M D, . B.34M

J
M
J

1,( ) ( ) ( ) ( )

The intermediate step is given here
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′

′

′

′

abg

abg abg

abg abg

abg abg

abg abg

=

+ Ω +

+ Ω +

− Ω −

− Ω −

′ Ω

− + Ω− + + + Ω

+ − Ω+ − − − Ω

+ + Ω+ + − + Ω

− − Ω− − + − Ω

*

* *

* *

* *

* *

J J D

C J J D C J M J D

C J J D C J M J D

C J J D C J M J D

C J J D C J M J D

,

1
4

,
1
4

,

1
4

,
1
4

,

1
4

,
1
4

,

1
4

,
1
4

, ,

B.35

y y M
J

M
J

M
J

M
J

M
J

M
J

M
J

M
J

M
J

1 1

1 1

1 1

1 1

[ ] ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

which reduces to

abg =′ Ω
*J J D, 0. B.36y y M

J[ ] ( ) ( )

Again, one might be tempted to infer from equation (B.36) a general commutator
relation that also applies to angular momentum states.
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Appendix C

Modified Boltzmann plots

This appendix elaborates on the use of Boltzmann plots [1] for diatomic molecular
spectroscopy inferences of temperature from a measured emission spectra. The
Boltzmann plot method evaluates temperature by finding the slope from a semilog
graph of recorded spectral lines, e.g., the integrated line shape in determination of
hydrogen excitation temperature in atomic spectroscopy. In molecular spectroscopy,
usually there are many lines within a spectral resolution of the order of 0.1nm, which
are typical for laser-plasma emission spectroscopy that uses resolving powers of the
order of 5000. Consequently, a modified Boltzmann plot approach [2] is developed
for analysis of measured molecular spectra.

C.1 Boltzmann plots
The formal approach starts with an equation containing an exponential,

f x A e , C.1x= a−( ) ( )

one evaluates the logarithm of both sides, and puts the result into point-slope form
for a straight line,

f x x A
y x m x b

ln ln
.

C.2
a= − +

= +
[ ( )]

( )
( )

In spectroscopy, spontaneous emission from a gas adheres to the spectral
radiance, or frequently labeled ‘intensity’, originating from an upper level, u, to a
lower level, l,

/I
a e c C N

Q
C S e

64
3

. C.3ul ul ul
h c F k T

4
0

2
abs 0 4 u B

p
n= n

−( )
˜ ( )˜

( )
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The individual terms are listed below.
• a e0 : Bohr radius ×electronic charge.
• c, h, kB: speed of light, Planck constant, Boltzmann constant.
• Cabs: absolute intensity calibration factor andCñ—relative spectral sensitivity
calibration factor.

• N0: number density, molecules / cm3.
• Q: partition function of gas.
• ñ: wave number of spectral line produced by u l→ transition.
• Sul: electric dipole line strength.
• Fu: upper term value (i.e., energy eigenvalue divided by h c).
• T: absolute temperature.

The linearized spontaneous emission equation,

I
C S

h c
k T

F
a e c C N

Q

y m x b

ln ln
64

3
,

,

C.4
ul

ul B
u4

4
0

2
abs 0

n
p

= − −

= +
n

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠˜

( )
( )˜

is solved to find the slope m. A Boltzmann plot is a graph of ln ul

ul
4

I

C Sn n( )˜ ˜
versus the

upper term value Fu. The slope is proportional to /T1− , of course provided that
thermodynamic equilibrium is reached,

T
h c

k m
C.5

B
= − ( )

Since the points would deviate from straight line, one labels the graph as a nonlinear
Boltzmann plot, which would imply departure from thermal equilibrium. Figure C.1
illustrates an example of a Boltzmann plot.

Figure C.2 displays the spectrum from which the Boltzmann plot is constructed.
A Boltzmann plot can be made using the peak intensity or (better) the intensity

integrated under each spectral line, but in either case the spectral lines must be fully
resolved. The following shows how to make a Boltzmann plot when the spectral
lines are not fully resolved. Table C.1 shows an example of a line list.

An emission spectral line is broadened by physical processes in the radiating gas
and the properties of the spectrometer used to record the spectral line. A widely-used
measure of spectral line width is the full width at half maximum (FWHM.) A
spectrum is effectively broken into a finite number of pixels between the minimum

minl and the maximum maxl wavelengths in the spectrum (or the minimum or
maximum frequencies ν or wave numbers ñ), and the FWHM can be used as the
pixel width.

An emission spectrum is computed by evaluating expressions indicated in
equation (C.3). One selects a line shape function (i.e., a Gaussian) and an
FWHM, and computes the contributions of each line. A snippet of a program
code utilizes a Gaussian line shape.
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Figure C.1. A Boltzmann plot for a spectrum from the N2 second positive system.

Figure C.2. A Boltzmann plot constructed a N2 second positive system.
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Table C.1. Spectral line lists: an example downloaded from NIST.

Wavelength Aul Eu El gu
air (Å) (s−1) (cm 1− ) (cm 1− )

2118.312 1.03 107× 0 47 192.38 2
2123.362 1.22 107× 112.061 47 192.38 4
2129.663 1.52 107× 0 46 940.97 2
2134.733 1.81 107× 112.061 46 941.55 4
2145.555 2.33 107× 0 46 593.32 2
2150.699 2.79 107× 112.061 46 593.95 4
2168.805 3.06 107× 0 46 093.424 2
2174.028 3.65 107× 112.061 46 094.312 4
2199.150 1.75 106× 0 45 457.244 2
2204.590 3.49 106× 112.061 45 457.244 4
2204.660 4.53 107× 0 45 344.165 2
2210.046 5.40 107× 112.061 45 345.594 4
2257.999 3.77 106× 0 44 273.133 2
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C.2 Modified Boltzmann plot
The intensity Ip falling on a pixel (i.e, a small wave number range nΔ ˜ ) is the sum of
all of the intensities of the spectral lines that contribute to the intensity range nΔ ˜ ,

/I f C S econst. , C.6p
i

i i i i
h c F k T

1

all lines
4 i∑ n n n= Δ

=

−(˜ ˜ ) ˜ ( )( )

where f ,in nΔ( ˜ ˜ ) is the line shape function. Because the term value Fi varies greatly
from line to line, the exponential cannot be taken outside the summation. Therefore,
an arbitrary exponential /eh c F k Tj ( ) is inserted,

/ /I e f C S econst. , . C.7p
h c F k T

i
i i i i

h c F F k T

1

all lines
4j j i∑ n n n= Δ−

=

− −(˜ ˜ ) ˜ ( )( ) ( ) ( )

The exponential /e h c F k Tj− ( ) can be isolated, meaning that for assumed values of the
term value Fj and temperature T, one can create a Boltzmann plot. The value of Fj is
chosen to be Fi for the spectral line making the biggest contribution to Ip. The value of

/ /ln
I

C S
f econst. , C.8p

i i i
i i

h c F F k T
4

1

all lines
j i∑n

n nΔ
=

− −
⎜ ⎟
⎛
⎝

⎞
⎠˜

(˜ ˜ ) ( )( ) ( )

is plotted versus Fj for a trial T, but there is no reason why the temperature inferred
from this plot will equal the trial temperature. However, the new temperature can
replace the trial temperature, and the process is repeated, i.e., the procedure must be
iterated until the trial temperature and the temperature from the Boltzmann plot agree.

An example output from modified Boltzmann plot routine displays the effective-
ness of the iteration to find the excitation temperature.

a

a
K

Trial temperature 6000.
1 2078.
2 2073.
3 2073.
4 2073.
5 2073.

Std.Dev. Boltzmann plot 5.1378 10

0 3.364 1.2980 10
Second radiation constant 1.438 79

1 6.9404 10 6.314 0 6
Boltzmann plot temperature 2073. Std.dev. 18.9

2

2

4 1

=

= ×
= ± ×

=
= − × ± × −

= = ±

−

−

−
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Appendix D

Aspects of nitric oxide computations

This appendix communicates a collection of notes on the molecular parameters of
nitric oxide (NO). These notes contain considerable discussion of the quantum
mechanics of the diatomic molecule. The interesting topic of hyperfine structure is
ignored.

In the present state of the applied science, the molecular parameters are found by
fitting term value differences computed from an approximate Hamiltonian to the
best experimental values for the line positions. The computation begins with trial
values of the parameters, which are then iteratively refined until the differences
between the computed and experimental line positions are minimized in the least
squares sense.

This appendix discusses results found from fitting some of the best available NO
data. The literature on NO is too vast for a comprehensive review. It can only be
hoped that the following offers a representative sampling.

D.1 Matrix elements of the Hamiltonian
This section gives a review of the methods of applied quantum mechanics in
diatomic spectroscopy. As an example of high quality experimental spectra,
reference will be made to the NO rotation-vibration data reported by Amiot et al
[1]. Their measured line positions are not reported in the journal article, but their
data are still available from the Canadian Depository of Unpublished Data. The
Macki and Wells [2] data for the (1,0) band are more accurate than the data of
Amiot et al, but Macki and Wells report only smoothed line positions instead of
measured values.

For their analysis of their NO spectra, Amiot et al reference the important paper
by Zare et al [3], which describes the computation of term values by diagonalization
of the Hamiltonian. The Zare et al ’s method consists of four steps, which will be
further discussed.

In the first step, trial values of the molecular parameters and analytical methods are
used to evaluate the matrix elements of the Hamiltonian in the Hund’s case (a) basis.
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The second step is an analytical approximation, called the Van Vleck transformation,
which reduces the dimension of the square Hamiltonian matrix to

+ × +S S2 2 1 2 2 1( ) ( ), where S is the total electronic spin quantum number for
the dominant state in the basis—if the latter is a Σ state, then the result of the Van
Vleck transformation has the dimensions + × +S S2 1 2 1( ) ( ). In addition to
reducing the dimensions of the Hamiltonian, the Van Vleck transformation also splits
the Hamiltonian into two independent submatrices of opposite parity.

The ground state of NO is usually modeled as a dominant Π2 state, which
contributes a 4 × 4 submatrix to the Hamiltonian, weakly mixed with a Σ+2 state,
which contributes a 2 × 2 submatrix. Thus, in this model the Hund’s case (a)
representation of the Hamiltonian is a 6 × 6 matrix. Van Vleck’s approximate
transformation reduces the Hamiltonian to a 4 × 4 matrix composed of two
independent 2 × 2 matrices of opposite parity. The third step in Zare et al’s method
is numerical diagonalization of the two submatrices. The fourth step is a matrix
computation which gives corrections to the trial values of the molecular parameters.
If the computed corrections are not negligibly small, steps 1–4 are iteratively
repeated until the corrections become negligibly small.

The following determinations of NO parameters differ from Zare et al’s method
in one way. The Van Vleck transformation is skipped. Thus, for the ground state of
NO the present computations involve numerical diagonalization of a single 6 × 6
matrix instead of numerical diagonalization of two 2 × 2 submatrices.

Various different Hamiltonian models for NO ΠX 2( ) will be investigated below
but the conclusion is that the accepted model of a dominant Π2 state with a small
component of a Σ+2 state adequately describes the available experimental observa-
tions. Table D.1 shows the fit of this model to the NO (1,0) band data of Amiot
et al [1].

Most of the symbols in the following tables have their standard meanings.
= +T T Gev v where Te is the electronic term value and Gv is the vibrational term

value. nΔ ˜ is the search tolerance used by the fitting program when it searches for an
experimental spectral line to match a predicted line.

An experimental line for which there is no predicted line having the same ′J and
″J whose vacuum wave number is within the search tolerance nΔ ˜ is eliminated from

the fit. The table caption entry ‘405 lines of 419’ indicates that 14 experimental lines
were rejected from the fit, and σ is the standard deviation of the predicted line
positions (vacuum wave number) with respect to the 405 accepted experimental
line positions. Values in parenthesis represent 1 standard deviation expressed in the
last digits. Values in square brackets were held fixed during the fitting process. Other
symbols in the table will be defined below. The ratio of the standard deviation of the
fit to the band origin, s n ≈ × −/ 2 1010

7˜ .
Most of the richness of the typical diatomic spectrum is produced by the

rotational Hamiltonian, the term in the diatomic Hamiltonian representing the
kinetic energy of rotation of the nuclei, given by

=H B r R D.1rot
2( ) ( )
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in which R is the orbital angular momentum operator for the nuclei whose motion
has been reduced to that of a single, fictitious particle of reduced mass m,

m =
+

m m
m m

D.2
a b

a b
( )

of the nuclei whose masses are ma and mb, and

p m
=B r

c r4
D.32

ħ( ) ( )

where r is the internuclear distance. The rotational parameter B r( ) has the units of
energy, but the right-hand side of the above equation has been divided by hc
(Planck’s constant times the speed of light) to give B r( ) the spectroscopist’s unit of
energy which has the units of reciprocal length.

When, as has been assumed here, the normally very small influence of nuclear
spin on the term values can safely be ignored, the total angular momentum,

= + +J L R S D.4( )

is the sum of the total electronic orbital angular momentum L, the total nuclear
orbital angular momentum R, and the total electronic spin S. The rotational
Hamiltonian becomes [5]

Table D.1. The molecular parameters for the v = 0 and v = 1 states of the ground
electronic state of NO obtained by fitting the model of a dominant Π2 state
weakly mixed with a Σ+2 state to the (1,0) band data of Amiot et al. [1]

Π =X 12 ( )v =T 2824.6331 5( )v

=B 1.678 5715 27( )v = × −D 5.4893 26 10 6( )v

=A 122.7026 21( )v = × −A 3.475 38 10vJ
4( )

< > =−AL 177.8 1.0( ) < > = × −AL 4.2 1.8 10J
3( )

< > =−BL 1.3922 76( ) < > = − × −BL 4.2 1.3 10J
5( )

Π =X 02 ( )v =T 948.66[ ]v

=B 1.696 1445 30( )v = × −D 5.4735 29 10 6( )v

=A 122.9495 23( )v = × −A 3.565 42 10J
4( )v

< > =−AL 180.4 1.1( ) < > = × −AL 3.4 2.0 10J
3( )

< > =−BL 1.433 84( ) < > = − × −BL 3.1 1.5 10J
5( )

Σ =+A 02 ( )v =T 45087.65[ ]v

=B 1.986 312[ ]v = × −D 5.575 10 6[ ]v

g = − × −1.34 10 4[ ]v

The parameters for the Σ+2 state were held fixed to those values found from a fit
to the Σ = ↔ Π =+A X0 02 2( ) ( )v v γ-system data of Engleman et al [4]. The upper
state extends to ′ J0.5 40.5, includes 405 of 429 lines, with an accuracy of
nΔ = 0.001˜ cm−1 and s = 0.000 38 cm−1. The term value difference equals

n = 1875.973110˜ .
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]
( ) ( )

( ) ( )

( )

where unprimed components are in the laboratory coordinate system, primed
components are in a coordinate system attached to the molecule, and the raising
and lowering operators are defined by, for example,

= ±±J J J , D.7x y ( )

with similar equations for S± and L±. The analytical form of each term in the
Hamiltonian is preserved under a coordinate transformation, compare equations
(D.5) and (D.6). Matrix elements of Hamiltonian terms are much easier to analyti-
cally evaluate in molecular coordinates than in the laboratory coordinates.

As explained in many quantum mechanics texts, specification of the states of a
quantum system is normally done with the standard 〉nJM∣ states of the system,
where J is the quantum number for the total angular (the quantity which obeys the
conservation law for angular momentum), M is the quantum number for the
laboratory z component of J, and n denotes all other required quantum numbers.
The exact equation for the standard 〉nJM∣ states of the diatomic molecule is [5]

∑ abg〈 … 〉 = 〈 ′ 〉
Ω=−

Ω
*nJM r n Dr r r r R, , , , D.8

J

J

e M
J

1 2 N ∣ ∣ ( ) ( )

where …r r r, , ,1 2 N are the laboratory coordinates of the N electrons; r is the
internuclear vector; α, β, and γ are the Euler angles; ′Re represents −3 1N rotated
electronic coordinates (γ is the missing electronic coordinate); and abgΩDM

J ( ) is the
matrix element of the rotation operator (note that its complex conjugate appears in
the above equation). The Hund’s case (a) basis is defined by [5]

p
abg〈 … ΩΛ Σ〉 =

+
〈 ′ 〉 Σ〉 Ω

*nJM S
J

r n S Dr r r r R, , , ,
2 1

8
. D.9e M

J
1 2 2N ∣ ∣ ∣ ( ) ( )

in which Ω is the quantum number for the ′z component of J and Σ is the quantum
number for the ′z component of S . The relationship

= +′ ′ ′J L S D.10z z z ( )

holds because the ′z -axis lies on the internuclear axis and the nuclei have no
internuclear component of orbital angular momentum (i.e., =′R 0z ). Thus,

Ω = Λ + Σ D.11( )
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and Λ, the quantum number for ′Lz is also a case (a) quantum number, although it
does not explicitly appear on the right-hand side of equation (D.9).

The Born–Oppenheimer approximation has not been applied in either the exact
equation for the 〉nJM∣ diatomic states, equation (D.8), or the case (a) basis,
equation (D.9). The smallness of the electronic mass in comparison to the nuclear
mass produces an approximate separation of the electronic and nuclear motions. In
the usual exposition of the Born–Oppenheimer approximation, the approximate
separation of the electronic and nuclear motions involves all of the electronic and
nuclear internal coordinates. However, in the present formulation the Euler angles
play no part in the Born–Oppenheimer separation, which is concerned exclusively
with the eigenfunction ′〈 〉r nRe ∣ . The quantum number v, the quantum number
associated with the internuclear distance r, is extracted from the collection of
quantum numbers represented by the symbol n, and the Born–Oppenheimer
approximate separation of ′〈 〉r nRe ∣ v is then made,

y y

〈 ′ 〉 ≈ 〈 ′ 〉 〈 〉

= ′
r n r n r

r r

R R

R

;

;
D.12e e

n e

∣ ∣ ∣
( ) ( )

( )
v v

v

in which the semicolon is a notational device indicating that the electronic
eigenfunction ′y rR ;e e( ) is a parametric function of the internuclear distance r.
This means that the electronic Schrödinger equation has a different solution for each
value of the internuclear distance. Because the electronic eigenfunction is a para-
metric function of r, all electronic matrix elements are functions of r.

Application of the Born–Oppenheimer approximation to the case (a) basis gives

p
abg〈 … ΩΛ Σ〉 =

+
〈 ′ 〉 〈 〉 Σ〉 Ω

*nvJM S
J

r n r S Dr r r r R, , , ,
2 1

8
; . D.13e M

J
1 2 2N ∣ ∣ ∣ ∣ ( ) ( )v

Matrix elements of the rotational Hamiltonian can be calculated using equations
(D.6) and (D.13). Zare et al [3] give tables of case (a) matrix elements. They are also
given by Lefebvre-Brion and Field [6]. Sign ambiguities between Zare et al and
Lefebvre-Brion and Field can be resolved through application of equations (D.6)
and (D.9) [5]. Table D.5 gives example matrix elements of Hrot in a state consisting
of a mixture of Π2 and Σ2 case (a) basis states. The diagonal matrix elements of the
rotational Hamiltonian, 〈 ΩΛ Σ ΩΛ Σ〉nJM S H nJM Srot∣ ∣ , are given by

〈 ΩΛ Σ + − − + ΩΛ Σ〉

= + − Ω + + − Σ
′ ′ ′ ′ ′ ′ ′B nJM S L J L J S L S JM S

B J J S S

J 2 2 2

1 1 ,
D.14z z z z z z z

2 2

2 2

∣ ∣
[ ( ) ( ) ]

( )v

v

where the rotational constant Bv is defined by

p m p m
= 〈 〉 = 〈 〉− −B

c
n r n

c
r

4 4
. D.152 2ħ ħ∣ ∣ ∣ ∣ ( )v v v vv

Because the internuclear distance is held constant for evaluation of an electronic
matrix element, the rotational constant is diagonal with respect to the electronic
quantum numbers n.
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The operations involving J and S are straightforward. Operation of J2, Jz, and ′Jz

on the standard 〉nJM∣ and Ω〉nJ∣ states obey,

〉 = + 〉nJM J J nJMJ 1 D.162 ∣ ( ) ∣ ( )

〉 = 〉J nJM M nJM D.17z ∣ ∣ ( )

Ω〉 = Ω Ω〉′J nJ nJ D.18z ∣ ∣ ( )

The only possible point of confusion here is the standard state Ω〉nJ∣ , which is
referenced to the rotated, molecule fixed, z-axis (i.e., the ′z -axis) instead of the
laboratory z-axis. For any system, the standard 〉nJM∣ and Ω〉nJ∣ states are related
by

∑ abg〈 … 〉 = 〈 ′ ′ … ′ Ω〉
Ω=−

Ω
*nJM nJ Dr r r r r r, , , , , , D.19

J

J

M
J

1 2 1 2N N∣ ∣ ( ) ( )

where, for the moment, N is the number of particles having spatial coordinates in
the system. This is a general result holding for any quantum system, see, e.g.,
Thompson’s [7] equation (6.19) or equation (xx) of [5].

The operations involving L are more complicated. The operators J2 and J± act on
the rotation matrix element but not ′〈 〉r nRe ∣ v or the electronic spin states Σ〉S∣ . The
operator S2 affects nothing but the spin ket Σ〉S∣ . The total electronic orbital angular
momentum,

∑=
=

L l D.20
i

i
1

N
( )

in which li is the orbital angular momentum of the ith electron is a function of 3N
coordinates where N is the number of electrons. The symbol ′Re represents only

−3 1N electronic coordinates, and the third Euler angle γ is the remaining electronic
coordinate. Thus, −3 1N components of L operate on ′〈 〉nRe∣ v and the remaining
component gl acts on abgΩ

*DM
J

, ( ). A Clebsch–Gordon expansion of the rotation
matrix element gives

∑ ∑

p

abg abg

〈 … ΩΛ Σ〉 =
+

〈 ′ 〉 Σ〉

× 〈 〉 〈 Λ Σ Ω〉
=− =−

Λ Σ
* *

nJM S
J

r n S

NM SM JM N S J D D

r r r r R, , , ,
2 1

8

.
D.21

e

M N

N

M S

S

N S M
N

M
S

1 2 2

N S

N S

N ∣ ∣ ∣

∣ ∣ ( ) ( )
( )

v

in which N, the laboratory referenced MN, and the molecule referenced Λ are the
quantum numbers associated with the total orbital angular momentum N,

= +N L R D.22( )

For the one electron for which γ is the angular coordinate of rotation about the
internuclear axis,
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( )

( )

Thus, operation of gl in the case (a) basis is given by

ΩΛ Σ〉 = Λ ΩΛ Σ〉gl nJM S nJM S . D.24∣ ∣ ( )

Calculation of off-diagonal matrix elements of the rotational Hamiltonian is
complicated by the nonstandard behavior of the case (a) states under operation of
the raising and lowering operators. The rotation matrix element carries two
magnetic quantum numbers, one more than mathematically admitted by the
definition of angular momentum. The familiar behavior of standard 〉nJM∣ under
raising and lowering operators,

〉 = + − ± ± 〉
= ± 〉

±

±

J nJM J J M M nJ M

C JM nJ M

1 1 , 1

, 1
D.25

∣ ( ) ( ) ∣
( ) ∣

( )

does not hold for the rotation matrix element, even though it looks like an angular
momentum eigenfunction because it is specified in terms of angular coordinates and
quantum numbers. The rotation matrix elements obey [5]

 abg abg= −± Ω ΩJ D C JM D , D.26M
J

M
J

1,( ) ( ) ( ) ( )

abg abg′ = Ω± Ω ± Ω±J D C J D , D.27M
J

M
J

, 1( ) ( ) ( ) ( )

abg abg=± Ω ± ± Ω
* *J D C JM D , D.28M

J
M
J

1,( ) ( ) ( ) ( )

abg abg′ = − Ω± Ω ± Ω
* *J D C J D . D.29M

J
M
J

, 1( ) ( ) ( ) ( )

These equations show that the rotation matrix element does not have the mathe-
matical properties of an angular momentum eigenfunction. One can conclude, with
the support of mathematical certainty, that abgΩDM

J ( ) is not an angular momentum
eigenfunction. Armed with the ability to count to two, one can draw the same
conclusion from the symbol abgΩDM

J ( ). Nevertheless, essentially without exception
in diatomic literature, the rotation matrix element is treated as if it were an angular
momentum eigenfunction, and this is the source of considerable confusion.

Using equation (D.29) for the nonstandard case (a) basis states but using the
standard result

Σ〉 = Σ Σ ± 〉± ±S S C S S, 1 D.30∣ ( ) ∣ ( )

for the electronic spin states because Σ〉S∣ is standard angular momentum state of
the type given in equation (D.25), one finds (table D.2)
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v v

=〈 〉 + − Σ Σ − + + − Σ Σ +BL S S S S1 1 1 1 D.33[ ( ) ( ) ( ) ( ) ] ( )

where

〈 〉 = 〈 ′ + ′ ′ ′〉+ −BL n B r L L n D.34∣ ( )( )∣ ( )v v

Equation (D.31) and the example given in table D.3 show that the Hund’s case (a)
matrix representation of R2 is nondiagonal. Therefore, the matrix of the rotational
Hamiltonian, equation (D.1), is also nondiagonal. Strictly speaking, the Hund’s case
(a) basis is not a valid eigenfunction. At best, it is a poor physical approximation. This
is no way detracts from its use as a basis. Before the widespread availability of digital
hardware and numerical algorithms, diagonalization of the 6 × 6 matrix of table D.3
presented an essentially impossible task, but today numerical diagonalization of this
matrix is trivial with even a very modest computer. In current practice, in table D.4 the
fact that the Hund’s case (a) basis does not yield a diagonal Hamiltonian matrix adds
only the single line of code, CALL JACOBI, to a computer program.

Table D.5 gives the results of fitting the same data of Amiot et al used in table D.1
but with a different Σ2 state. A comparison between tables D.1 and D.5 shows that

Table D.3. Matrix elements of R2 in a state which is a mixture of Π2 and Σ2 case (a) basis states.

Λ′ −1 −1 1 1 0 0
Σ′ − /1 2 1/2 − /1 2 1/2 − /1 2 1/2

Ω′ − /3 2 − /1 2 1/2 3/2 − /1 2 1/2

Λ Σ Ω

−1 − /1 2 − /3 2 119.000 10.954 0 0 0 0
−1 1/2 − /1 2 10.954 121.000 0 0 0 0
1 − /1 2 1/2 0 0 121.000 10.954 0 0
1 1/2 3/2 0 0 10.954 121.000 0 0
0 − /1 2 − /1 2 0 0 0 0 121.000 11.000
0 1/2 1/2 0 0 0 0 11.000 121.000
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only the mixing parameters +AL and +BL and the associated corrections for
centrifugal stretching +AL J and +BL J are significantly influenced by the change in
the parameters of the Σ2 state.

Zare et al give the equations

∑=
〈 ′ Π ′ ′ Σ 〉

−
Σ
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+
+

+

′ ′ ′
o

n J AL n J

E E
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v v
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for the Van Vleck transformation.
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Appendix E

Parity in diatomic molecules

This appendix communicates the application of the parity operator to the general
diatomic eigenfunction [1]. The parity eigenvalue is a product of two factors, one
that depends on the total angular momentum quantum number and a second
constant factor that can be interpreted as the intrinsic parity of the molecule. These
new results allow one to rigorously design an algorithm for the computation of
diatomic spectra by utilizing that allowed transitions have nonvanishing rotational
line strengths.

E.1 Introduction
The diatomic Hamiltonian matrix is historically parity-partitioned, thereby giving
parity a more important role in diatomic spectroscopy than in atomic spectroscopy,
e.g., see Zare et al [2]. Typically, a diatomic line list will include rotational parity
designations for the lower levels [3]. Several authors, e.g., Hougen [4], Røeggen [5],
Judd [6], and Larsson [7], have presented treatments of diatomic parity using the
approximate Born–Oppenheimer separation of the diatomic eigenfunction into
rotational, vibrational, and electronic factors.

In this work, operation of the parity operator on the general Wigner–Witmer [8]
diatomic eigenfunction is used to yield the parity eigenvalues that are composed of a
constant and an angular momentum dependent part. The computation of diatomic
molecular spectra is accomplished without the need to explicitly include parity
selection rules. The fundamental Wigner–Witmer diatomic eigenfunction simplifies
the determination of rotational line strengths, i.e., Hönl–London factors. Allowed
transitions are governed by nonzero rotational line strengths.

E.2 Parity operator
The discrete parity operation can be accomplished with a rotation and a reflection.
The parity operator, P , can be written as a product,

s= C . E.12P ( )v

doi:10.1088/978-0-7503-6204-7ch35 E-1 ª IOP Publishing Ltd 2024. All rights,
including for text and data mining (TDM), artificial intelligence (AI) training, and similar technologies, are reserved.
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The determinant of the matrix representations s y z,( )v and xC2( ) in laboratory xyz-
coordinates are −1 and +1, respectively. The C2 operator is a proper rotation that
can be expressed as a discrete transformation of Euler angles. The Euler angles are
the arguments of the Wigner D-function used to formulate rotational symmetry;
consequently, the eigenvalues of C2 are controlled by the angular momentum, J. The
s y z,( )v operation results in a constant factor, and the C2 operation yields the
angular momentum dependent part of the parity eigenvalue.

E.3 Rotation operator and Wigner D-function
Molecular eigenfunctions are normally expressed in rotated coordinates. The
representations of the eigenfunction in original and rotated coordinate systems are
connected with the rotation operator, a b g, ,R( ); Euler angles a, b and g ; and the
Wigner D-functions,

∑

∑

a b g a b g

a b g

〈 … 〉 = 〈 … Ω〉〈 Ω 〉

= 〈 ′ ′ … ′ Ω〉

Ω=−

Ω=−
Ω
*

JM J J JM

J D

r r r r r r

r r r

, , , , , , , , , ,

, , , , , .

E.2J

J

J

J

M
J

1 2 1 2

1 2

R RN N

N

∣ ∣ ( )∣ ∣ ( )∣

∣ ( )
( )

†

Angular momentum is the generator of rotations; therefore, one can expect that
application of the discrete operator C2 to the arguments of the D-function would
yield a relationship between angular momentum and parity.

In terms of spatial and angular coordinates appropriate to the diatomic molecule,
equation (E.2) can be written as

∑

r z c q f

r z c q f a b g

〈 … 〉

= 〈 ′ ′ … ′ ′ ′ Ω〉
Ω=−

Ω
*

n JM

n J D

r r

r r

, , , , , , r, ,

, , , , , , r, , , , .
E.3

n

J

J

N M
J

2

2

∣

∣ ( )
( )

v

v

Here, r is the distance of one electron (the electron arbitrarily labeled 1 but it could
be any one of the electrons), z is the distance of that electron above or below the
plane that passes through the center of mass of the two nuclei (the coordinate
origin), and χ is the angle of rotation of that electron about the internuclear vector

q fr r, ,( ). The vibrational quantum number, v, has been extracted from the
quantum numbers collection, n, which represents all required quantum numbers
except J, M, Ω, and v.

The variables r, z , and r are scalars, which are unaffected by rotations. The
physical rotation f and the angle of coordinate rotation a are about the same axis,
namely the z-axis. The physical rotation q and the angle of coordinate rotation b are
also about the same axis, namely the first intermediate y-axis of the full coordinate
rotation. The angles c and g are both rotations about the ′z -axis. Thus,

f f a q q b c c g′ = − ′ = − ′ = −, , . E.4( )
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In coordinate rotations, one is at liberty to choose a, b, and g. If one chooses for the
angles a f= , b q= , and g c= , then all angular dependence of

′ ′r z c q f〈 ′ … ′ ′ Ω〉n Jr r, , , , , , r, ,N2 ∣ v is removed. This yields the Wigner and
Witmer [8] diatomic eigenfunction,

∑

r z c q f

r z f q c

〈 … 〉

= 〈 ′ … ′ 〉
Ω=−

Ω
*

nJM

n D

r r

r r

, , , , , , r, ,

, , , , , r , , .
E.5

n

J

J

N M
J

2

2

∣

∣ ( )
( )

v

The values of the quantum numbers, J and Ω, influence the electronic–vibrational
eigenfunction ′ ′r z〈 … 〉r nr r, , , , ,N2 ∣ v , but the electronic–vibrational eigenfunction
is not an angular momentum state vector.

E.4 Parity of diatomic states
Parity is rotationally invariant. Inversion of the signs of all rotated coordinates
inverts the signs of all unrotated coordinates, and vice versa. Therefore, the parity
operator can be represented by s′ ′ ′x y zC ,2( ) ( )v . The application to the right-hand
side of the Wigner–Witmer diatomic eigenfunction (E.5) yields the parity
eigenvalues,

= − − −Σp p J1 half integer, E.6J( ) ( )

= −Σp p J1 integer. E.7J( ) ( )

The constant part of the parity eigenvalue, pΣ, is labeled in accord with standard
spectroscopic notation. The imaginary values of −1 J( ) occurring when J is half-
integer can be avoided if one adopts the convention [3] to always subtract 1/2 from J
when J is half-integer. With this convention, equation (E.6) is replaced by

/= − − −Σ
−p p J1 half integer. E.8J 1 2( ) ( )

The value of Σp does not depend upon quantum numbers. It is a global value
applying to all states of a given molecule. If the diatomic molecule can be said to
have an intrinsic parity, then it is clearly Σp . One would expect the product of the
intrinsic parities of the fundamental particles composing the molecule to equal Σp .

E.5 Parity in an algorithm for computing diatomic spectra
The following describes an algorithm in which equations (E.7) and (E.8) become
practical equations for computing diatomic parity.

Consider the algorithm for computation of the wavelengths and intensities in the
spectrum of a molecule from the first principles of quantum mechanics. The upper

′H and lower H Hamiltonian matrices are computed and numerically diagonalized
by unitary matrices, ′U and U. The upper ′′ ′ ′Fn Jv and lower F Jnv terms are the
eigenvalues of the Hamiltonians,

′ = ′ ′ ′′ ′ ′F U H U E.9an J ( )†
v
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=F U H U , E.9bn J ( )†
v

and the vacuum wave numbers, ñ , of the predicted spectral lines,

n = ′ −′ ′ ′F F , E.10n J n J˜ ( )v v

are term differences. Of the very large number of computed term differences, only
those for which the Condon and Shortley [9] line strength does not vanish are
spectral lines. The line strength, ′ ′ ′S n J n J,( )v v , is the sum over all M and ′M of the
irreducible tensor Tk

q( ) expectation values, 〈 ′ ′ ′ ′〉n JM T n J Mk
q∣ ∣( )v v . The exact sepa-

ration of the total angular momentum in the Wigner–Witmer diatomic eigenfunc-
tion results in a diatomic line strength composed of two parts,

′ ′ ′ = ′ ′ ′S n J n J S n n S J J, , , , E.11( ) ( ) ( ) ( )v v v v

the electronic–vibrational strength, ′ ′S n n,( )v v , and the unitless rotational line
strength or Hönl–London factor, ′S J J,( ). The Born–Oppenheimer approximation
separates the electronic–vibrational strength into electronic and vibrational parts. In
the Hund’s case (a) basis built from the Wigner–Witmer eigenfunction, the third
Euler angle, c g= , appears in the Wigner D-function,

p
r z f q c

〉 = Ω Σ〉

=
+

〈 ′ … ′ 〉 Σ〉 Ω
*

a n JM S

J
n S Dr r

2 1
8

, , , , , r , , .
E.12

N M
J

2 2

∣ ∣

∣ ∣ ( )
( )

v

v

The algorithm for computation of the vacuum wave numbers, ñ, and diatomic
spectral line strengths, ′ ′ ′S n J n J,( )v v , is a straightforward application of quantum
mechanics, but except for the very simplest molecules is also very far removed from
the realm of the possible. However, with two very stringent caveats, the algorithm
can be implemented for the diatomic molecule. The first caveat is that the vacuum
wave numbers, ñ , for many spectral lines in many bands of a band system must have
been experimentally measured with high accuracy, such as that provided by Fourier
transform spectroscopy. The second caveat is that using semiempirical molecular
constants one must be able to build upper and lower Hamiltonian matrices whose
eigenvalue differences accurately predict the measured vacuum wave numbers. A
fitting process is required [2]. One assumes trial values for the molecular constants,
computes the spectral lines positions, ñ , and from the differences between n n− exp˜ ˜
finds the corrections to the molecular parameters. The difference between computed
and measured line positions will typically equal the measurement error margins.

As a specific example, the line position data of Faris and Cosby [10] are used for
the NO beta (3,0) band for the purpose of then creating a complete line list for the
band with line strengths. Figure E.1 illustrates a spectrum generated from the NO
line list.

A multiphoton 1+1 excitation was used to observe 10 of the 12 possible branches
[10], with particular attention given to the parity designations of the numerous Λ
doublets. These data are particularly suited for testing applications of the algorithm
for the calculation of diatomic spectra. A total of 428 lines were fitted with a
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standard deviation of 0.030 cm−1, and a line list having no missing lines for the
range of upper and lower J values was computed. Table E.1 provides details of the
lines displayed in figure E.1. The computed parity eigenvalues agree with those
assigned by Faris and Cosby [10].

The Hund’s case (a) basis is mathematically complete. A sum of basis functions,
〉a∣ , can be quantitatively very accurate. The parity operator, P , commutes with the

Hamiltonian. Thus, the orthogonal matrix that diagonalizes the case (a) represen-
tation of the Hamiltonian will also diagonalize the case (a) representation of P .

The exact separation of the coordinates of the total angular momentum in the
Wigner D-function greatly simplifies implementation of the algorithm, which uses
nonvanishing line strengths to determine if a computed term difference represents an
allowed spectral line. The Hönl–London factors are computed from the Hund’s case
(a) transition moment and the matrices, U and ′U , which diagonalize the upper and
lower Hamiltonians.

A single selection rule handles all types of diatomic spectra. If the Hönl–London
factor, ′S J J,( ), is nonvanishing, then the transition is allowed. Parity plays no part
in the fitting process that determines the molecular parameters, but the parity
eigenvalues are computed from the finalized values of the molecular parameters. The
presented algorithm can be used to predict molecular spectra for the purpose of
fitting measured data [11].

Figure E.1. Section of computed spectrum of the NO Π − ΠB X2 2 (3,0) band. The lines are further described
in table E.1 [1].
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Table E.1. Lines of the NO Π − ΠB X2 2 (3,0) band (see figure E.1).

J p ′FJ FJ ñ ′S J J,( ) ñ-nexp˜
(cm−1) (cm −1) (cm−1) (cm−1)

24.5 P21 −f 49 111.456 982.866 48 128.590 0.813 0.021
24.5 P21 +e 49 111.501 982.588 48 128.914 0.812 0.078
22.5 P11 −f 48 952.618 822.538 48 130.080 21.749 0.014
22.5 P11 +e 48 952.673 822.282 48 130.390 21.805 −0.020
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17.5 P12 −e 48 747.244 614.307 48 132.936 0.527 −0.012
20.5 R12 −f 48 952.618 814.699 48 137.919 0.881 0.034
20.5 R12 +e 48 952.673 814.701 48 137.971 0.880 −0.077
25.5 R11 +f 49 210.930 1068.021 48 142.908 25.424 0.034
25.5 R11 −e 49 210.985 1067.731 48 143.254 25.317 −0.018

Notes. The Hönl–London factors, ′S J J,( ), and parity eigenvalues, p, are derived from numerical diagonaliza-
tion of Hamiltonians in Hund’s case (a) basis. The P 19.522( ) Λ doublet is not resolved in the experiments [10].
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Appendix F

Rotational line strengths for the
CN BX (5,4) band

This appendix communicates rotational line strengths for the cyanide (CN)
Σ − Σ+ +B X2 2 (5,4) band [1]. Rotational line strengths, computed from eigenvectors

of Hund’s case (a) matrix representations of the upper and lower Hamiltonians using
Wigner–Witmer basis functions, show a larger than expected influence from the
well-known perturbation in the (5,4) band. Comparisons with National Solar
Observatory (NSO) experimental Fourier transform spectroscopy data reveal nice
agreement of measured and predicted spectra.

F.1 Introduction
The CN violet Σ − Σ+ +B X2 2 band system is one of the most studied band systems.
Ram et al [2] and Brooke et al [3] have summarized the available experimental and
theoretical information. Of the many known bands in the violet system, only the
(5,4) band is considered here. This band exhibits a weak, quantitatively understood
perturbation [4] caused by mixing of the v = 17 level of ΠA2 with the v = 5 level of

Σ+B 2 . The particular perturbation of the CN (5,4) band is not considered in the
study by Brooke et al [3] but is evaluated in this work by isolating the spectral
features of this band that is part of the CN violet system. Numerical diagonaliza-
tions of upper and lower Hamiltonians with and without the perturbation are
investigated and compared with available experimental spectra. The simulations rely
on determining rotational strengths without parity-partitioned Hamiltonians. It is
anticipated that the investigated (5,4) band modifications can be possibly confirmed
with the new PGOPHER program that was recently released by Western [5].

F.2 CN (5,4) band spectra
For the computation of rotational spectra, the square of transition moments are
numerically computed using the eigenvectors of upper and lower Hamiltonians. This
approach can also be selected in the new PGOPHER program [5]. For the diatomic
molecule, the results effectively yield the Hönl–London factors, yet we do not utilize

doi:10.1088/978-0-7503-6204-7ch36 F-1 ª IOP Publishing Ltd 2024. All rights,
including for text and data mining (TDM), artificial intelligence (AI) training, and similar technologies, are reserved.
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tabulated Hönl–London factors that are available in standard textbooks. Table F.1,
and figures F.1 and F.2 compare results obtained with and without taking into
account the mixing. Results of modeling the angular momentum states of the upper
v = 5 vibrational level as a mixture of Σ2 and Π2 Hund’s case (a) basis functions, a
so-called ‘de-perturbation” or perturbation analysis, agree well that of Ito et al [4]
whose used the line position measurements of Engleman [6]. The 100 lines of the
more recent data of Ram et al [2] were fitted with a standard deviation of 0.025
cm−1. Failure to include spin-orbit mixing of the Σ+B2 and ΠA2 basis states
increased the standard deviation to 0.25 cm−1.

The table and synthetic spectra reveal that the changes caused by spin-orbit
mixing are relatively very much larger for the rotational line strengths, ′S J J,( ), than
for the line positions, ñ . The simulation results compare nicely with measured
spectra [2] available from the NSO at Kitt Peak [7]. Figure F.3 displays the recorded
and simulated spectra for a resolution of 0.03 cm−1.

The influence of Σ + Π+2 2 mixing on the rotational line strengths, ′S J J,( ), was
recognized because computation of ′S J J,( ) is an integral part of the unique line
position fitting algorithm. Upper and lower Hamiltonian matrices in the Hund’s
case (a) basis are numerically diagonalized, and the spectral line vacuum wave
number ñ is the difference between upper and lower Hamiltonian eigenvalues.

Table F.1. Lines in the CN Σ Σ+ +B X2 2 (5,4) band near the perturbation.

′J J ′p ñ ′SJ J nΔ ˜ ′SJ J
0( ) nΔ 0˜ ( )

9.5 8.5 R11 −e 28 013.117 9.474 −0.010 9.474 0.337
9.5 8.5 R22 +f 28 017.421 9.474 0.001 9.474 −0.059
10.5 9.5 R11 +e 28 016.992 9.1988 −0.004 10.476 0.600
10.5 9.5 R22 −f 28 021.651 11.171 −0.000 10.476 −0.067
11.5 10.5 R11 −e 28 020.540 7.868 −0.041 11.478 1.193
11.5 10.5 R22 +f 28 025.866 12.240 0.006 11.478 −0.067
12.5 11.5 R22 −f 28 030.125 13.288 0.007 12.480 −0.072
12.5 11.5 R11 +e 28 030.431 13.812 12.480
13.5 12.5 R11 −e 28 032.081 17.455 −0.053 13.481 −1.870
13.5 12.5 R22 +f 28 034.428 14.325 0.011 13.481 −0.073
14.5 13.5 R11 +e 28 035.672 17.919 −0.005 14.483 −1.102
14.5 13.5 R22 −f 28 038.773 15.356 0.013 14.483 −0.076
15.5 14.5 R11 −e 28 039.742 18.442 0.007 15.484 −0.807
15.5 14.5 R22 +f 28 043.161 16.383 0.009 15.484 −0.084
16.5 15.5 R11 +e 28 043.989 19.132 0.011 16.485 −0.655
16.5 15.5 R22 −f 28 047.590 17.405 0.006 16.485 −0.091

Notes. ñ are the fitted line positions, ′S J J,( ) are the rotational line strengths computed in the fitting algorithm.
′S J J,0 ( )( ) and nΔ 0˜ ( ) are the line strengths and errors in the fitted line positions, respectively, when the off-

diagonal spin-orbit coupling constants 〈 + 〉AL and 〈 + 〉BL are set equal to 0. Spin-orbit mixing of Σ+B 2 and ΠA2

shifts the upper e parity levels. An error in the n ′J J,˜ ( ) associated with these upper e parity levels is produced if
the mixing is ignored. A relatively large fractional error, e.g., -3.974/17.455 versus -1.870/28032 for R 12.511( ),
can occur in the rotational line strengths, ′S J J,( ).
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To determine which of the many eigenvalue differences represent allowed spectral
lines, the factor ′S J J,( ) is computed from the upper and lower eigenvectors for each
eigenvalue difference. A nonvanishing ′S J J,( ) denotes an allowed diatomic spectral
line. Parity-partitioned effective Hamiltonians are not used. Parity and branch
designation are not required in the fitting algorithm. Input data to the fitting
program is a table of vacuum wave number ñ versus ′J and J. The nonvanishing of
the rotational strength is the only selection rule used. Applications of this rule lead to
the establishment of spectral databases for diatomic molecular spectroscopy of

Figure F.1. Synthetic emission spectra showing the influence of inclusion of the = ΠA17, 2v basis in the upper
v = 5 state of the CN violet (5,4) band. In the upper spectrum, (a), the upper states are pure Σ+2 . The

= ΠA17, 2v energy eigenvalues lie very near the = Σ+B5, 2v eigenvalues, and this explains the large
influence of the ΠA2 basis. In the lower spectrum, (b), the upper states are treated as the sum Σ + ΠΣ

+
Πc c2 2

with Σ Πc c . Only R-branch lines are shown here, including those given in table F.1 [1].

Figure F.2. The lower resolution spectra include both the P and R branches. (a) pure, (b) addition of a small
amount of Π2 to the upper basis affects the lower spectrum of the violet (5,4) band, even at low resolution [1].
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selected transitions [8]. Over and above the PGOPHER program [5], there are other
extensive efforts in predicting diatomic molecular spectra including, such as the so-
called DUO program [9] for diatomic spectroscopy.

F.3 Wigner–Witmer diatomic eigenfunction
The Hund’s case (a) basis functions were derived from the Wigner and Witmer [10]
diatomic eigenfunction,

∑ ′ ′r z c q f r z f q c〈 … 〉 = 〈 … 〉 Ω
Ω=−

*r n JM r n Dr r r r, , , , , , , , , , , , , , , . F.1N N M
J

2 2
J

J

v v∣ ∣ ( ) ( )

The coordinates are ρ the distance of one electron (the electron arbitrarily labeled 1
but it could be any one of the electrons) from the internuclear vector q frr , ,( ), the
distance ζ of that electron above or below the plane perpendicular to r and passing
through the center of mass of the two nuclei (the coordinate origin), the angle χ for
rotation of that electron about the internuclear vector r, and the remaining
electronic coordinates …r r, , N2 in the fixed and ′ ′…r r, , N2 in the rotating
coordinate system. The vibrational quantum number v has been extracted from
the quantum numbers collection n which represents all required quantum numbers
except J, M, Ω, and v. The Wigner–Witmer diatomic eigenfunction has no
application in polyatomic theory, but for the diatomic molecule the exact separation
of the Euler angles is a clear advantage over the Born–Oppenheimer approximation
for the diatomic molecule in which the angle of electronic rotation, χ, is unnecessa-
rily separated from the angles describing nuclear rotation, θ and f. Equation (F.1)
can be derived by writing the general equation for coordinate (passive) rotations α,
β, and γ of the eigenfunction, replacing two generic coordinate vectors with the

Figure F.3. Comparison of measured and simulated spectra. (a) Segment of the recorded [2] Fourier transform
spectrum 920 212R0.005 [7], (b) computed spectrum for a temperature of 300 K and a spectral resolution of
0.03 cm−1. The computed (5.4) band is flipped vertically to show how the predicted line positions of the
R-branch match the vacuum wave numbers of the experimental spectrum [1].
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diatomic vectors q frr , ,( ) and r z c′r , ,( ), and equating the angles of coordinate
rotation to the angles of physical rotation f, θ, and f. The general equation for
coordinate rotation holds in isotropic space, and therefore the quantum numbers J,
M, and Ω in the Wigner–Witmer eigenfunction include all electronic and nuclear
spins. If nuclear spin were to be included, J, M, and Ω would be replaced by F, MF,
andΩF , but hyperfine structure is not resolved in the 5, 4( ) band data reported by [2],
and equation (F.1) is written with the appropriate spectroscopic quantum numbers.

It is worth noting that the rotation matrix element f q cΩD , ,M
J ( ) and its complex

conjugate f q cΩ
*D , ,M

J ( ) do not fully possess the mathematical properties of
quantum mechanical angular momentum. It is well known that a sum of Wigner
D-functions is required to build an angular momentum state. The equation

f q c f q c′ = + − Ω Ω± Ω Ω 
* *J D J J D, , 1 1 , , F.2M

J
M
J

, 1( ) ( ) ( ) ( ) ( )

is not a phase convention [11–13] but a mathematical result readily obtained from
equation (F.1) and

′ Ω〉 = + − Ω Ω ± Ω ± 〉±J J J J J1 1 , 1 , F.3∣ ( ) ( ) ∣ ( )

in which the prime on the operator ′±J indicates that it is written in the rotated
coordinate system where the appropriate magnetic quantum number Ω.

F.4 Hund’s basis functions
The Hund’s case (a) basis function based upon the Wigner–Witmer diatomic
eigenfunction is

r z c q f

p
r z f q c

〉 = 〈 ′ … ′ ΛΣΩ〉

=
+

〈 ′ … ′ 〉 Σ〉 Ω
*

a r n JMS

J
r n S D

r r

r r

, , , , , , , ,

2 1
8

, , , , , , , .
F.4

M
J

2

2 2

N

N

v

v

∣ ∣

∣ ∣ ( )
( )

As noted above, a sum of 〉a∣ basis functions is required to build an eigenstate of
angular momentum. The basis function would also not be an eigenstate of the parity
operator. The case (a) matrix elements, pij

a( ), of the parity operator P ,

d d d d= − Ω −Ω Λ −ΛΣp p J J n n, , , F.5ij
a J

i j i j i i i j( ) ( ) ( ) ( ) ( ) ( )( )

show that a single 〉a∣ basis function is not an eigenstate of parity. The procedure
called parity symmetrization adds Ω〉JM∣ and −Ω〉JM,∣ basis functions, thereby
destroying the second magnetic quantum number Ω and yielding a function which at
least possesses the minimal mathematical properties of an eigenstate of angular
momentum, parity, and the other members of the complete set of commuting
operators. The general procedure would be to continue adding basis functions to the
upper and lower bases until eigenvalue differences between the upper and lower
Hamiltonians accurately predict measured line positions.
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F.5 The upper Hamiltonian matrix for the (5,4) band
Electronic spin S interactions with electronic orbital momentum L and nuclear
orbital momentum R produce both diagonal and off-diagonal matrix elements in the
Hund’s case (a) representation of the Hamiltonian. The off-diagonal elements
connect different basis states. For example, both of the mentioned spin-orbit
interactions connect Σ+2 and Π2 . Because Van Vleck transformed Hamiltonians
are not used, the appropriate parameters for the strength of these interactions are
〈 + 〉AL and 〈 + 〉BL . Table F.2 lists the molecular parameters used in the
Hamiltonian matrices. Tables F.3 and F.4 show the Hamiltonian matrices without
and with spin-orbit interactions, respectively.

F.6 A diatomic line position fitting algorithm
A basic tool for the diatomic spectroscopist is a computer program that accepts a
table of experimentally measured vacuum wave numbers nexp˜ versus ′J and J, and
outputs a set of molecular parameters with which one can reproduce the nexp˜ with a
standard deviation comparable to the estimated experimental error. In practice, an
experimental line list frequently shows gaps, vis. spectral lines are missing.
Following a successful fitting process, one can use the molecular parameters to
predict all lines. A computed line list is especially useful when it includes the Condon
and Shortley [15] line strength from which the Einstein coefficients and oscillator
strength [16, 17] and the HITRAN line strength [18] can be calculated. A feature of
the line fitting program described below is its use of nonzero rotational strengths (see
equation (F.8)) to mark which of the many computed differences between upper and
lower term values represents the vacuum wave number of an allowed spectral line.

Table F.2. Molecular parameters used in this work, which relies on Hamiltonians that are not parity-
partitioned.

Σ+X2 Σ+B2 ΠA2

v = 4 v = 5 v = 17

Bv 1.820 866(13) 1.845 727(13) 1.404 833
Dv × −6.172 36 10 6( ) × −8.003 38 10 6( ) × −5.66 10 6

Av −50.5253
gv

− × −1.98 43 10 4( ) − × −1.921 44 10 2( )
gDv

− × −1.98 43 10 4( )

Tv 8011.7871 35 990.1780(25) 36 010.5732
< + >AL 4.25(0.03)
< + >BL 0.0205(0.001)

Notes. Values not followed by a number in parenthesis were held fixed or an error estimate was not computed.
A value in parenthesis is the standard deviation in the fitted value. Parameters for the ΠA 2 state were fitted by
the Nelder–Mead minimization algorithm using values given by Brooke et al [3] as trial values. Error estimates
were not computed, and the values of Brooke et al [3] were only very slightly changed.
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Consequently, the fitting process creates a complete line list including rotational
factors. Parity plays no part in the fitting process, but the same orthogonal matrix
that diagonalizes the case (a) from the three independent 2 × 2 matrices of table F.3,
the off-diagonal matrix elements mix the Hund’s case (a) basis states, and the
standard deviation of the spectral line fit mentioned in table F.3 is reduced by a
factor of 10 to 0.025 −cm 1. The spin-orbit coupling constants 〈 + 〉 =AL 4.25 0.03( )
and 〈 + 〉 =BL 0.205 0.001( ) were used in computation of this Hamiltonian. This
single 6 × 6 matrix describing Π − Σ+2 2 mixing can be compared with the two 3 × 3
parity-partitioned matrices of Brown and Carrington [14].

The Hamiltonian matrix will also diagonalize the case (a) parity matrix whose
elements are given in equation (F.5). The = ±p 1 parity eigenvalue becomes a
computed quantity, and the e/f parity designation is established from the parity
eigenvalue using the accepted convention Brown et al [19].

Trial values of upper and lower state molecular parameters, typically taken from
previous works by other for the band system in question, are used to compute upper
H’ and lower H Hamiltonian matrices in the case (a) basis given by equation (F.4)
for specific values of ′J and J. The upper and lower Hamiltonians are numerically
diagonalized,

′ = ′ ′ ′T U H U F.6a˜ ( )

=T U H U F.6b˜ ( )

giving the upper ′T and lower T term values. The vacuum wave number ñ is
determined,

n = ′ −T T , F.7ij i j˜ ( )

and the rotational strength is evaluated,

∑∑ d′ = + ′ 〈 Ω Ω′ − Ω ′Ω′〉 Σ′ ΣS J J J U J q J U, 2 1 ; , . F.8ij
n m

in mj n m

2

( ) ( ) ˜ ∣ ( ) ( )

The degree of the tensor operator, q, responsible for the transitions amounts to q = 1
for electric dipole transitions. For a nonzero rotational factors, ′S J J,( ), the vacuum
wave number nij˜ is added to a table of computed line positions to be compared with
the experimental list nexp˜ versus ′J and J. The Clebsch–Gordan coefficient,
〈 Ω Ω′ − Ω ′Ω′〉J q J; , ∣ , is the same one appearing in the pure case (a)—case (a)
formulae for ′S J J,( ). For a specific values of ′J and J, one constructs tables for nexp˜
and computed nij˜ . The errors nΔ ij˜ ,

n n nΔ = − , F.9ij ij exp˜ ˜ ˜ ( )

are computed where each nij˜ is the one that most closely equals one of the nexp˜ . Once
values of nij˜ and nexp˜ are matched, each is marked unavailable until a new list of nij˜ is
computed. The indicated computations are performed for all values of ′J and J in
the experimental line list, and corrections to the trial values of the molecular
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parameters are subsequently determined from the resulting nΔ ij˜ . The entire process
is iterated until the parameter corrections become negligibly small. As this fitting
process successfully concludes, one obtains a set of molecular parameters that
predict the measured line positions nexp˜ with a standard deviation that essentially
equals the experimental estimates for the accuracy of the nexp˜ .

F.7 Discussion
The influence on intensities in the (5,4) band of the CN violet system caused by the
weak spin-orbit mixing, figures F.1 and F.2, is significantly larger than initially
anticipated. This was noticed because computation of the rotational strengths is an
integral part of our line position fitting program. The eigenvectors that diagonalize
the Hamiltonian to yield fitted line position ñ also yield ′S J J,( ). The eigenvectors of
Van Vleck transformed effective Hamiltonians are rarely discussed in the literature;
equally, the calculations of Hönl–London factors appear problematic. In established
diatomic molecular practice, Hönl–London factors are determined independently of
line positions. Analytical approximations utilize the parameter = /Y A B to account
for the influence of spin-orbit interaction on ′S J J,( ). Kovács [20] gives many
examples, Li et al [21] give a more recent application. These analytical approx-
imations can accurately account for intermediate spin-orbit coupling which smooth
transitions between case (a) and case (b) with increasing ′J and J, but show limited
sensitivity to abrupt changes in ′S J J,( ) near perturbations such as those seen the
5, 4( ) band in the CN violet system.
It is noted in passing that the ′S J J,0 ( )( ) in table F.1 that describe rotational

strengths without off-diagonal spin-orbit constants, are exactly equal to pure case (b)
Hönl–London factors for Σ − Σ+ +2 2 transitions, even though all computations were
carried out in the Hund’s case (a) basis. This observation merely makes the point
that the Hund’s case (b) is defined due to the physical absence of spin-orbit coupling.

F.8 Conclusion
The Wigner–Witmer diatomic eigenfunction makes it possible to form an exact,
mathematical connection between computation of ñ and ′S J J,( ) in a single
algorithm. The concept of the nonvanishing rotational strengths as the omnipotent
selection rule initially conceived as a simplifying convenience in a computer
algorithm is now seen to be more valuable, as evidenced in this work’s analysis of
the CN (5,4) band perturbations by isolating a specific branch. Future work is
planned for comparisons of the CN (10,10) band spectra that include perturbation
and that show promising agreements with experiments and PGOPHER predictions.
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Appendix G

Intrinsic parity of the diatomic molecule

This appendix discusses appearances of selected homonuclear spectra. In quantum
field theory, the parity of a state is broken into two parts: one depending on the
angular momentum and the second part, called the intrinsic parity, that is
independent of angular momentum. Particles currently viewed as fundamental
(e.g., the photon and electron) are assigned an intrinsic parity. Since parity is
multiplicative, the intrinsic parity of a collection of fundamental particles is the
product of the individual intrinsic parities. Thus, nucleons have an intrinsic parity of
+1, and the intrinsic parity of an atomic or molecular system having N electrons is
simply − N( ) . Does intrinsic parity have any relevance in atomic and molecular
physics? By comparing experimental spectra recorded by others with synthetic
spectra computed by us using intrinsic parity − N( ) in the computations, we conclude
that intrinsic parity is relevant to the spectra of homonuclear diatomic molecules.

The unresolved hyperfine structure (unresolved nuclear spin states) of a diatomic
molecule state effectively give the state a degeneracy factor (statistical weight)

= + +g I I2 1 2 1a b( )( ), where Ia is the nuclear spin of one nucleus and Ib the nuclear
spin of the second nucleus. When the two nuclei are identical, the total nuclear spin
statistical weight remains +I2 1 2( ) where = =I I Ia b, but the number of nuclear
spin states +g for which the parity is +1 and the number of states −g for which the
parity is −1 are unequal. This leads to the alternation of intensity in the spectrum of
a homonuclear diatomic molecule. The experimental spectra given in the bottom
trace in figures (G.1)–(G.3) are examples. In each figure above the experimental
spectrum is a computed diatomic spectrum, which agrees agrees reasonably well
with the experimental spectrum, and the top trace in each figure is another computed
spectrum which is in qualitative disagreement with the experimental spectrum. The
only difference between the two computed spectra are the parity values used in their
computation.

doi:10.1088/978-0-7503-6204-7ch37 G-1 ª IOP Publishing Ltd 2024. All rights,
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The synthetic spectra in Figs (G.1)–(G.3) were computed using the following
algorithm.

• For given upper total angular momentum quantum ′J and lower quantum
number J, the upper and lower Hamiltonian matrices ′H and H are computed
in the Hund’s case (a) basis and are numerically diagonalized to obtain the
eigenvalues ′F and F and eigenvectors ′U and U,

′ = ′ ′ ′F U H U G.1( )†

=F U H U G.2( )†

• The Hönl–London factors ′SJ J are computed,

∑∑= + 〈 〉 〈 ′〉 〈 ′ ′〉k′
′

Ω
′Ω′S J J a a C a a J2 1 G.3J J

a a
J q
J

2

( ) ∣ ∣ ∣ ∣ ( )

and the term difference (i.e., line position) is computed for each nonvanishing
Hönl–London factor,

n = ′ − ≠′F F S, if 0 G.4J J˜ ( )

Figure G.1. Two synthetic Π − Πd aC g u
13

2
3 3 spectra compared with an experimental spectrum [1]. The Λ-

doublets are partially resolved. The intrinsic parity of an neutral diatomic molecule is +1 (i.e., the number of
electrons is even). For the upper Πd g

3 state, ′ = +p 1gu , while for the lower Πa u
3 state, = −p 1gu . Thus,

′ ′= = +Σp p p 10 gu and = = −Σp p p 10 gu . The molecular parameters were found by fitting the line position
data of [1]
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Figure G.2. Two synthetic Π − ΠC Bu g
3 3 N2 second positive system spectra compared with an experimental

spectrum [2]. The Λ-doublets are partially resolved. This spectrum reverses the situation of figure G.1. The
intrinsic parity is again +1, but here ′ = −p 1gu and = +p 1gu , and one finds ′ ′= = −Σp p p 10 gu and

= = +Σp p p 10 gu . The molecular parameters were found by fitting the line position data [2].

Figure G.3. There are no Λ-doublets in a Σ − Σ
+ +
u g

2 2 spectrum, but the parity alternates from line to line
causing an alternation of intensity. The two synthetic spectra are compared with an experimental spectrum [3].
The intrinsic parity of the singly ionized +N2 molecule is −1. Thus, ′ ′= =Σp p p 10 gu and = = +Σp p p 10 gu .
The molecular parameters were found by fitting the line position data of [4].
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• A line list is created by repeating the above for all required ′J and J.

• A thermal distribution of excited states and a Gaussian spectrometer slit
function having a specified full width at half maximum are assumed.

• The spectrum was broken into a number of pixels, and the the contribution of
each line in the computed line list to each pixel is computed.

The matrix elements of parity in the Hund’s case (a) basis are the product of a
constant Σp and − J( ) ,

d d d d= −Σ Ω −Ω Λ −Λp p . G.5ij
J

J J n n, ,i j i j i j i j( ) ( )

The quantum number n denotes the electronic basis, and other symbols have the
standard meanings given them in diatomic spectroscopy. Parity is a member of the
complete set of commuting observables. Therefore, the orthogonal matrices ′U and
U that diagonalize the upper and lower Hamiltonians computed in the case (a) basis
will also diagonalize the upper and lower parity matrices computed in the case (a)
basis.

The only difference between the two computed spectra in each of figures (G.1)–(G.3)
are the values of the upper ′

Σp and lower Σp . When computing the synthetic spectra
given in figures (G.1)–(G.3), we imposed the selection rule ′≠Σ Σp p . Trial and error
quickly finds one of two possibilities, but having a theoretical reason for choosing the
value of Σp for a diatomic state is clearly desirable.

Equation (G.5) shows a breaking of parity into two parts, Σp and − J( ) . In
quantum field theory, parity is similarly broken into two parts, one depending upon
parity and the other independent of parity and called the intrinsic parity. Intrinsic
parity is believed to be a characteristic property of a fundamental particle. For
example, the electron has been assigned the intrinsic parity −1. Parity is multi-
plicative, and the intrinsic parity of a composite particle is the product of the
intrinsic parities of particles composing it, e.g., nucleons have an intrinsic parity of
+1. An atom or molecule has an intrinsic parity of − N( ) , where N is the number of
electrons. Ionization and electron attachment can obviously change the intrinsic
parity of a molecule, but standard electromagnetic transitions cannot. The selection
rule ′ ≠Σ Σp p used in the computation of the spectra shown in figures (G.1)–(G.3)
eliminates consideration of Σp as intrinsic parity. However, the value of Σp appears
to be correctly given as the product of the intrinsic parity eigenvalue p0 and the
gerade/ungerade parity eigenvalue pgu,

= −Σp p G.6N
gu( ) ( )

= p p . G.70 gu ( )
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Based upon the very limited number of comparisons with experiment given in the
attached figures, we tentatively conclude that equation (G.7) describes how intrinsic
parity influences the spectrum of a homonuclear diatomic molecule.

As long as the weak force is excluded from consideration, none will doubt that the
unitary transformation that diagonalizes the Hamiltonian matrix will also diago-
nalize the parity matrix, but equation (G.5) is new and its derivation is required. The
derivation of the Hund’s case (a) matrix representation of parity is based upon the
Wigner–Witmer diatomic eigenfunction, not the Born–Oppenheimer approxima-
tion, and thus represents a radical departure from current diatomic theory. The
considered Hamiltonian matrices are not effective Hamiltonians but are simply
composed of case (a) matrix elements. Furthermore, the Hamiltonians are not
separated into positive and negative parity submatrices, and Van Vleck reductions
of the matrix dimensions are not performed.
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Appendix H

Review of diatomic laser-induced breakdown
spectroscopy

This appendix summarizes diatomic molecular spectroscopy applications in laser-
induced breakdown spectroscopy (LIBS) that were recently communicated in a line
shape conference [1]. Moreover, this appendix serves as well as a summary on how
to apply the diatomic spectroscopy computations in part I for analysis of measured
emission spectra.

In principle, an atomic or molecular spectrum would be computed as follows:
upper and lower Hamiltonians would be enumerated in a complete basis, and
numerically diagonalized to give the upper and lower energy eigenvalues and
eigenvectors. The transition moments for the appropriate operator, e.g., the electric
dipole transition moments, would be evaluated from the eigenvectors. The vacuum
wave numbers ñ , i.e., energy eigenvalue differences, would be found for all non-
vanishing transition moments. The line strengths for each spectral line of wave
number ñ would be determined as sum of the squares of the transition moments over
all transitions producing the same ñ . A line list that includes line strengths would be
generated by repeating the above computations over the required range of upper and
lower total angular momentum quantum numbers. The spectrum from nmin˜ to nmax˜
would be separated into a number of pixels, and subsequently the contribution of each
line to each pixel is calculated using the line list. This appendix reviews how this
algorithm can be implemented for a diatomic spectrum if the required molecular
parameters are available.

H.1 Introduction
This work reports our algorithm used to compute the synthetic spectra of diatomic
molecules. Figure H.1 shows a measured spectrum of interest in LIBS [1–14], and it
also shows two computed C2 Swan spectra fitted to the experimental spectrum. With
one caveat, the algorithm is the textbook method for computation of a spectrum.
The caveat is that a comprehensive set of accurate diatomic parameters is required
for its implementation. We describe our algorithm and give an explanation of why it
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is based on the Wigner–Witmer diatomic eigenfunction [15] and not the Born–
Oppenheimer approximation [16].

H.2 Computation of a diatomic spectrum
Except for the baseline corrections, the synthetic spontaneous emission spectra in
figure (H.1) were computed using the following algorithm.

• For given upper total angular momentum quantum number ′J and lower
quantum number J, the upper and lower Hamiltonian matrices ′H and H are
computed in the Hund’s case (a) basis and numerically diagonalized to obtain
the eigenvalues ′F and F and eigenvectors ′U and U,

Figure H.1. A recorded C2 Swan spectrum [17] compared with two computed Swan spectra containing (a) a
small constant and (b) a quadratic baseline. The temperature and baseline values were obtained by trial and
error implemented with the Nelder–Mead extremum algorithm by varying the temperature for here a thermal
distribution of excited states [1].
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′ = ′ ′ ′F U H U , H.1( )†

=F U H U. H.2( )†

• The Hönl–London line-strength factors ′SJ J are computed [18],

∑∑= + 〈 〉 〈 ′〉 〈 ′ ′〉k′
′

Ω
′Ω′S J J a a C a a J2 1 H.3J J

a a
J q
J

2

( ) ∣ ∣ ∣ ∣ ( )

and the term difference, i.e., line position, is computed for each nonvanishing
Hönl–London line-strength factor,

n = ′ − ≠′F F Sif 0. H.4J J˜ ( )

• A line list which includes line strengths is created by repeating the above for
all required ′J and J.

• A thermal distribution of excited states and a Gaussian spectrometer slit
function having a specified full width at half maximum are assumed.

• The spectrum is separated into a number of pixels, and the the contribution of
each line in the computed line list to each pixel is computed.

Use of the above algorithm requires the Wigner–Witmer diatomic eigenfunction,

∑ r z f q c〈 … 〉 = 〈 ′ … ′ 〉
Ω=−

Ω
*nvJM r n Dr r r r r r, , , , , , , , , , , , H.5N

J

J

N M
J

1 2 2 v∣ ∣ ( ) ( )

in which the total angular momentum states are exactly separated instead of a Born–
Oppenheimer eigenfunction in which segregation of electronic and nuclear coor-
dinates is enforced, thereby preventing separation of the total angular momentum.
The quantum numbers in equation (H.5) are the vibrational quantum number v, the
total angular momentum quantum number J, the magnetic quantum number M for
the z-component of J, the magnetic quantum number Ω for the ′z component of J,
and n, which is a symbol representing all other required quantum numbers and
labels for continuum indices. In equation (H.5), primed and unprimed coordinates
are related by coordinate rotation,

f q c
′
′
′

=
x
y
z

x
y
z

, , . H.6D
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

The Euler angles f, θ, and χ and the coordinate rotation matrix f q c, ,D( ) used
here,

f q c
f q c f c f q c f c q c
f q c f c f q c f c q c

f q f q q
=

− + −
− − − +, ,

cos cos cos sin sin sin cos cos cos sin sin cos
cos cos sin sin cos sin cos sin cos cos sin sin

cos sin sin sin cos
. H.7D

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

( ) ( )
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are those used almost universally in the quantum theory of angular momentum [19–
25]. Kovács [26] uses a different set of Euler angles. Primes do not appear on ρ (the
distance of one of the electrons from the internuclear axis), ζ (the distance of this
electron above or below the plane perpendicular to the internuclear axis and passing
through the origin at the center of mass of the nuclei), and r (the internuclear
distance) because they are scalars whose value is the same in all coordinate systems.
The polar coordinates r, θ, and f are those of the fictitious particle of reduced mass
of the two nuclei who motion has replaced their motion. There are N electrons and
their coordinates are labeled 1, 2, …, N. The cylindrical coordinates ρ, χ, and ζ are
those of one of the electrons. In accord with standard practice in angular momentum
theory, the quantum numbers J, M, and Ω refer to the total angular momentum.
The spectroscopic quantum numbers F,MF, and ΩF replace J,M, and Ω in equation
(H.5) when it is written in spectroscopic notation.

In the Wigner–Witmer diatomic eigenfunction, the Euler angles f, θ, and χ are
both the parameters of coordinate rotation and the angles of physical rotation. The
diatomic molecule is perhaps the most complicated actual system in which a single
set of Euler angles can serve both purposes. For example, in polyatomic theory the
Euler angles f, θ, and χ are physical rotations describing a frame to which the nuclei
are attached, and are not the parameters of coordinate rotation α, β, and γ that one
would use to demonstrate rotational invariance and conservation of the total
angular momentum in a polyatomic model which included vibrational angular
momentum.

The Wigner–Eckart theorem breaks the transition moment into two parts: the so-
called reduced matrix element, whose value is controlled by the initial and final total
angular quantum numbers and the degree of transition tensor operator, and the
Clebsch–Gordan coefficient, whose value is controlled by the magnetic quantum
numbers and the indices of the components of the tensor operator. The exact
separation of the total angular momentum in the Wigner–Witmer eigenfunction
simplifies and improves the accuracy of computation of the Hönl–London strengths.
Line positions ñ and Hönl–London factors are normally independently evaluated. In
the present algorithm, they are simultaneously computed. Of the myriad upper and
lower term differences, only those for which the Hönl–London line-strength factor is
nonvanishing become spectral lines.

The Born–Oppenheimer approximation is not totally eliminated from computa-
tion of a diatomic spectrum. It is needed to break the electronic–vibrational
eigenfunction into the product of electronic and vibrational eigenfunction. The
Wigner–Witmer diatomic eigenfunction exactly separates the diatomic line strength
into the product of the electronic–vibrational strength ′ ′Sn n,v v and the Hönl–London
line-strength factor ′SJ J, ,

=′ ′ ′ ′ ′ ′S S S , H.8n J nvJ n n J J, , ,v v v ( )

= + + +′ ′ ′ ′ ′S a a r a r q . H.9n n, 0 1 2
2 2

v v v v v v v v¯ ¯ ( )

Quantum Mechanics of the Diatomic Molecule (Second Edition)

H-4



The Born–Oppenheimer approximation separates the electronic–vibrational
strength into the product of the square of the electronic transition moment,

= + + +R r a a r a r , H.10e 0 1 2
2( ) ( )

evaluated at the r-centroids ′rn
v v¯ ,

=
〈 ′ 〉

〈 ′ 〉
′r

r
, H.11n

nv v
v vv v¯
∣ ∣

∣
( )

and with the Franck–Condon factors ′qv v,

= 〈 ′ 〉′q . H.122v vv v ∣ ( )

Whereas experimental and calculated line positions are often known with an
accuracy of 1: 106 or better, spectral line intensity is rarely recorded with an
accuracy of better than 1%. Thus, use of the Born–Oppenheimer approximation
for calculation of the electronic–vibrational strength, but not for calculation of line
positions, does not introduce significant error.

H.3 Determination of the molecular parameters
Implementation of the algorithm described above requires a comprehensive set of
accurate molecular parameters. This is not a minor proviso, and the situation is
further complicated by the fact the use of the Wigner–Witmer eigenfunction
modifies the manner in which diatomic parameters are determined from a accurate
line position measurements such as those provided by Fourier transform spectro-
scopy. The basic idea in both current practice [27, 28] and our determination of
diatomic parameters is the calculation of matrix elements of the form

〈 〉 = 〈 Ω Λ Σ Ω Λ Σ 〉a H a n J M S H n J M S H.13i k j i i i i i i i i k j j j j j j j jv v∣ ∣ ∣ ∣ ( )

in which 〉a∣ is a Hund’s case (a) basis function,

′ ′
p

r z f q c〉 = ΩΛ Σ〉 =
+

〈 … 〉 Σ〉Ω*a n JM S
J

r n D Sr r
2 1

8
, , , , , , , H.14N M

J
2 2v v∣ ∣ ∣ ( ) ∣ ( )

and Hk is a term from the diatomic Hamiltonian

∑=H H . H.15
k

k ( )

Use of the Wigner–Witmer eigenfunction breaks required matrix elements of the
Hamiltonian into two parts: the angular momentum part, which can be calculated
exactly, and the electronic–vibrational part, which, except for the very simplest
molecules, cannot be calculated with spectroscopic accuracy. Use of a Born–
Oppenheimer eigenfunction breaks calculation into three parts: an electronic part,
a part consisting of a sum over an infinite number of Born–Oppenheimer vibrational
states, and a rotational part. In general, none of the three can be done exactly. Van
Vleck transformations, parity partitioning, and the concept of an ‘effective
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Hamiltonian” reduce the dimensions of the Hamiltonian matrix. We simply
compute a Hamiltonian matrix composed of case (a) matrix elements, and let the
dimension of the matrix be determined by the range of Ω in equation (H.5) be that
required make computed line positions nucal˜ equal the experimental positions nexp˜ to
within the estimated accuracy of the nexp˜ . With the exceptions that (1) our
Hamiltonian of unmodified case (a) matrix elements replaces the effective
Hamiltonian used by others and (2) instead of using coded selection rules we use
nonvanishing of the Hönl–London line-strength factor as the only selection rule, our
determination of molecular parameters is identical to that described by [29]. Trial
values of upper and lower parameters are assumed, the line positions are computed,
corrections to the parameters are computed from the errors in the computed line
positions,

n n nΔ = − , H.16cal exp˜ ˜ ˜ ( )

and the process is repeated until the corrections to the parameters become negligibly
small. The algorithm for finding molecular parameters by fitting computed line
positions to measured line positions is described in more detail in [30].

H.4 Discussion
The Wigner–Witmer paper [15] appeared about a year after the Born–Oppenheimer
paper [16]. The Born and Oppenheimer work treats all molecules, but the Wigner–
Witmer paper is strictly limited to the diatomic molecule. Although Born’s
formulation[16, 31] in terms of

k =
/m

M
H.17

0

1 4

⎜ ⎟
⎛
⎝

⎞
⎠

( )

in which m is the electronic mass and ‘where M0 can taken as any one of the nuclear
masses or their mean’ [31] is rarely used, the Born–Oppenheimer approximation
became the foundation of molecular theory. Although the Born–Oppenheimer
approximation is applicable to all molecules, in their final section Born and
Oppenheimer show that the polar angle and azimuthal angle of the polar
coordinates r, θ, and f of the internuclear vector in a diatomic molecule are exactly
separable in the spherical harmonic q fY ,ℓm( ). The Wigner complex conjugate of the
D-symbol, f q cw

*D , ,m
j ( ) is the mathematical extension of the spherical harmonics,

q f
p

f q=
+

*Y
ℓ

D,
2 1

4
, , 0 H.18ℓm m

ℓ
0( ) ( ) ( )

which allows one to deal with the total angular momentum 〉jm∣ rather that just the
orbital angular momentum 〉ℓm∣ . The first half of the Wigner–Witmer paper is the
logical extension of the Born–Oppenheimer q fY ,ℓm( ) result to include all three Euler
angles in diatomic eigenfunction. The two-part Wigner–Witmer paper became
famous for its second part, which gives correlation rules relating the electronic
states of a diatomic molecule to the L − S coupled states of the separated atoms.
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Oddly, the exact diatomic eigenfunction with which Wigner and Witmer determined
their correlation rules has been ignored. About 40 years passed between publication
the Wigner–Witmer paper and entry of the Wigner D-function into the literature of
diatomic theory. By then, the Wigner–Witmer diatomic eigenfunction had appa-
rently been forgotten.
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Appendix I

Program MorseFCF.for

This appendix lists the program ‘MorseFCF.for’ and the subroutines ‘MorseSubs.
for.’ This program has been utilized in investigations of titanium monoxide (TiO)
spectra that were measured following laser-induced breakdown spectroscopy with
1 to 100 TW cm −2 irradiance [1]. Franck–Condon factors and r-centroids were
computed and listed for selected TiO transitions [1] using Morse potentials chosen to
best fit the low lying vibrational levels. The electronic transition moments were taken
from the most recently reported initio computations for A–X, B–X, and E–X
transitions.

I.1 MorseFCF.for
This program computes Franck–Condon factors and first three r-centroids for a
Morse potentials and sets of molecular parameters.
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I.2 MorseSubs.for
This section list subroutines for the main program MorseFCF that computes
Franck–Condon factors and the first three r-centroids.
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Appendix J

Boltzmann equilibrium spectrum (BESP) and
Nelder–Mead temperature (NMT) scripts

J.1 BESP.m
The script BESP.m is designed following the FORTRAN/Windows 7 version [1].
The individual diatomic molecular data files for selected transitions are concaten-
ated to only show wave numbers, upper-term values, and line strengths; see
table 15.5. Adjustments of input parameters for MATLAB [2] are rather straight-
forward, equally, for generalizing the script for automatic input by converting the
script to a function. Individual lines are computed using Gaussian profiles [1]. For
the generation of a spectrum, only one temperature is needed for equilibrium
computation. Conversely, as one infers temperature from a measured spectrum, a
modified Boltzmann plot [3] is constructed for the determination of the equilibrium
temperature. A Gaussian line shape is selected to model the spectrometer/intensifier
transfer function profile. However, one usually considers a natural linewidth for
electronic state-to-state transitions, and a Gaussian line shape (equation (J.1)) for
Doppler broadening [4], viz.

l lΔ = × −7.16 10
T
M

, J.17 ( )

leading to Voigt line shapes. Here, lΔ is the full width at half maximum, l the
wavelength, T is the temperature, andM is the molecular weight. For example, with
l = 306 nm, =T 3.5 kK, and =M 17 (OH), lΔ = 0.0031 nm. The spectral
resolution, dl, for the OH emission spectra-fitting, discussed in this appendix,
amounts to dl = 0.33 nm. Consequently, a Gaussian line shape is considered
instead of a Voigt line shape for fitting of the OH data in the appendix, but the
communicated MATLAB scripts can be adjusted for Voigt profiles, which is
important for cases when individual electronic state-to-state molecular transitions/
resonances are investigated. Equally, when investigating individual transitions/
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resonances, asymmetric molecular line shapes can be implemented in the scripts.
There is usually a volley of lines for electronic transitions of a diatomic molecules,
e.g. OH [6] in excess of 3kK, within a wavelength bin and for an experimental
spectral resolution of the order of 0.33 nm.

The program BESP.m receives input from the LSFs that contain relative line
strengths. The output is generated in graphical format, and the program is slightly
adjusted for the generation of the spectra illustrated in figures 15.1–15.9. However,
figure 15.6 is generated with the BESP.m script given below.
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J.2 NMT.m
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Appendix K

Abel-inversion scripts

K.1 Abel-inversion programs
The Abel integral inversion algorithm utilizes function expansion techniques [1].
Chebyshev polynomials accomplish minimization of the maximum error [2]. The
advantages of the expansion techniques include direct inversion of recorded,
sensitivity corrected, and wavelength calibrated time-resolved data. A summary
and detailed discussion of numerical inversion of the Abel integral is communicated
in [3]. The published Matlab code [4, 5] is selected to accomplish analysis of
spatially- (along the slit-height) and wavelength-resolved images. A typical adapted
MATLAB [5] script, MixAnalysis.m, shows the implementation for analysis of CO2:
N2 1:1 mixed gas. The Chebyshev expansion is computed using Expansion.m

The adaptation includes provision for correction of a slight asymmetry in the
otherwise spherically symmetric expansion for specific time delays. The Matlab
script CGPimage.m generates graphical output that is also included in this appendix.
The MixAnalysis.m script includes lines for preparation of the plotting routines that
have been available. However, the CGPimage.m script applies simple MATLAB
display methods.
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K.1.1 MixAnalysis.m
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K.1.2 Expansion.m
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K.2 Display of wavelength calibrated and sensitivity corrected data

Figure K.1 displays typical wavelength calibrated and detector sensitivity
corrected data. The images illustrate the spectra recorded along the slit-direction.
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Figure K.1. Typical captured, wavelength calibrated, and sensitivity corrected CN spectra—1:1 molar CO2:N2

gaseous mixture held at atmospheric pressure and recorded with a CN spectra cut-on filter. Time delay: (a) 200
ns; (b) 450 ns; (c) 700 ns; (d) 950 ns; (e) 1200 ns; and (f) 1450 ns. Reprinted with permission from [6].
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K.3 Display of Abel inverted data

Figure K.2 displays typical output of the Abel inverted data.
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Appendix L

LIBS: 2018 to 2023 publications that
include C.G.P.

L.1 Introduction
The physics activities and works by the author C.G.P. led to his inclusion in the most
recent 2023 Stanford University career list of the World’s Top 2% Scientists [1]. This
communication summarizes research on the subject of laser-induced transient micro-
plasma diagnoses and selected publications during the years 2018 to 2023. Time-
resolved spectroscopy elucidates plasma dynamics and species distributions that are
generally of value in analytical chemistry. The contents of the summarized work
include aspects of electron density, and atomic and molecular distributions.
Applications extend from analyses of laboratory to stellar plasma. Of particular
interest is the spectroscopy of the hydrogen Balmer series and several diatomic
molecules. In most of the publications, nominal nanosecond radiation from table-
top laser devices is employed for the generation of the micro-plasma, and spatio-
temporal experimental methods capture phenomena that occur at well-above
hypersonic, supersonic, and subsonic plasma and gas expansion speeds.

This research-summary addresses recent 2018 to 2023 investigations [2] that were
primarily conducted at the Center for Laser Applications at The University of
Tennessee Space Institute. However, a few selected publications with international
collaborators are also included. The author, Dr Christian Parigger, has been
engaged in laser-plasma research at the University of Tennessee from 1987 to
2023. Recent publications in Multidisciplinary Digital Publishing Institute (MDPI)
journals Atoms, Molecules, Foundations, and Symmetry encompass various
research aspects. The 21 MDPI articles referenced in this summary reflect scientific,
open-access, and peer-reviewed engagements. Various conference contributions,
including in the Journal of Physics: Conference Series, further portray recent
research associated with the biannual and well-established International
Conferences on Spectral Line Shapes (ICSLS). The transition from previous
archived journals such as Applied Optics, Optics Letters, Spectrochimica Acta
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Part A and/or Part B, and Journal of Quantitative Spectroscopy and Radiative
Transfer to peer-reviewed open-access journals is in accord with worldwide
transition to open-access viz. access-for-everyone. In addition, the moderated
Cornell University https://arxiv.org and MDPI https://www.preprints.org preprint
servers also convey aspects of research. And, of course, the Auburn University
electronic International Review of Atomic and Molecular Physics (IRAMP) journal
https://www.auburn.edu/cosam/departments/phyiscs/iramp/index.htm communi-
cates peer-reviewed research activities.

L.2 Summary
L.2.1 Laser-plasma atomic and molecular spectroscopy

Hydrogen and selected diatomic emission spectroscopy includes analysis of labo-
ratory and stellar astrophysical plasma, e.g., from white dwarfs [3–8]. These works
include self-absorption assessments. Expansion dynamics at hypersonic, supersonic,
and subsonic are usually measured with spatio-temporal spectroscopy [9–17].
Fundamental aspects of diatomic molecular spectroscopy [18] lead to consistent
data analyses without invoking the concept of reversed angular momentum—the
Nelder–Mead temperature (NMT) program and the Boltzmann equilibrium spectra
program (BESP) are freely available [19] as clear-text scripts with data files. Plasma
diagnosis is elaborated with selected diatomic molecules, including comparisons of
the published database with other readily available databases for OH, CN, C2, and
AlO [19–25]. In addition, the collaboration with the University of Prayagraj
(formerly Allahabad), India, on meteorite and gypsum laser-induced breakdown
spectroscopy (LIBS) [26, 27] and on medical applications that include gallstone and
pointed gourd leaves analyses has been elaborated [28, 29]. Collaborations with the
University of Cairo include research on plasma involving silver nano-particles [30–
32]. Recent collaborations with the Chemical Research Center in Hungary focus on
microwave plasma methylidyne (CH) cavity ring-down spectroscopy [33].

L.2.2 Molecular spectroscopy chapter and e-book

The two fundamental works in 2020 are a book chapter [34] on molecular LIBS and
an e-book on diatomic spectroscopy [35]. The former communicates molecular
spectroscopy and applications to plasma, combustion, and astrophysics analyses.
Primary interests include plasma in gases; however, the book chapter [34] includes
laser ablation, including the coauthors’ work on laser-ablation molecular isotopic
spectrometry (LAMIS). Diatomic molecules include cyanide (CN), aluminum
monoxide (AlO), titanium monoxide (TiO), Swan bands of C2, and the hydroxyl
radical (OH). Aspects of spherical aberrations from focusing with a single lens are
elaborated, and Abel inversion techniques are discussed for determination of spatial
molecular distribution. The latter derives diatomic spectroscopy transition strengths
[35] employing the Wigner–Witmer diatomic eigenfunction. The diatomic line
strength is composed of electronic, vibrational, and rotational transition terms,
including Franck–Condon, Hönl–London and r-centroid factors.
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L.3 Discussion
Both atomic and molecular species can be readily discerned from comparisons of
measured and computed atomic line shapes and molecular band appearances.
Several of the investigations elucidate experimental spatially- and temporally-
resolved LIBS records’ analysis details. The molecular emission spectroscopy
comparisons require accurate databases. The established and well-tested databases
for selected electronic, vibrational, and rotational diatomic transitions and the
associated analysis programs are now published for applications in LIBS research
[19]. The 2018 to 2023 summary shows a research focus in 2022 to 2023 on
molecular diagnosis by comparing accurate line strengths predictions [19–23] with
those from readily available other corresponding databases [36, 37], including
ExoMol [37]. Future applications are envisioned to include laser-induced hydro-
gen-based combustion—analysis of hydrogen emission lines and OH molecular
bands are expected to benefit from the research publications communicated in this
summary.
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