#artificial-intelligence #code-review #argus #ai-agent #coupling #coding-agent #hotspot #shouldn-t #grade #bus-factor

argus-gitpulse

AI code review platform — your coding agent shouldn't grade its own homework

7 releases

new 0.4.0 Feb 17, 2026
0.3.2 Feb 17, 2026
0.2.2 Feb 16, 2026

#110 in Email

22 downloads per month
Used in 3 crates

MIT license

83KB
1.5K SLoC

Argus — AI Code Review Platform

Your coding agent shouldn't grade its own homework.

CI npm version License: MIT

Argus is a local-first, modular AI code review platform. One binary, six tools, zero lock-in. It combines structural analysis, semantic search, git history intelligence, and LLM-powered reviews to catch what your copilot misses.

Why Argus?

  • Independent review — your AI agent wrote the code, a different AI reviews it. No self-grading.
  • Full codebase context — reviews use structural maps, semantic search, git history, and cross-file analysis. Not just the diff.
  • Zero lock-in — works with OpenAI, Anthropic, or Gemini. Switch providers in one line. Gemini free tier = zero cost.
  • One binary, six tools — map, diff, search, history, review, MCP server. Composable Unix-style subcommands.

Get Started in 60 Seconds

# 1. Install via npm
npx argus-ai init          # creates .argus.toml

# 2. Set your key (Gemini, Anthropic, or OpenAI)
export GEMINI_API_KEY="your-key"

# 3. Review your changes
git diff HEAD~1 | npx argus-ai review --repo .

Install

npx argus-ai --help
# or
npm install -g argus-ai

From Source

cargo install --path .

Subcommands

review — AI Code Review

Run a context-aware review on any diff or PR.

# Review local changes
git diff main | argus review --repo .

# Review a GitHub PR (posts comments back to GitHub)
argus review --pr owner/repo#42 --post-comments

map — Codebase Structure

Generate a ranked map of your codebase structure (tree-sitter + PageRank).

argus map --path . --max-tokens 2048

Hybrid code search using embeddings (Voyage/Gemini/OpenAI) + keywords.

argus search "auth middleware" --path . --limit 5

history — Git Intelligence

Detect hotspots, temporal coupling, and bus factor risks.

argus history --path . --analysis hotspots --since 90

diff — Risk Scoring

Analyze diffs for risk based on size, complexity, and diffusion.

git diff | argus diff

mcp — MCP Server

Connect Argus to Cursor, Windsurf, or Claude Code.

argus mcp --path /absolute/path/to/repo

doctor — Diagnostics

Check your environment, API keys, and configuration.

argus doctor

GitHub Action

Add automated reviews to your PRs:

name: Argus Review
on: [pull_request]
permissions:
  pull-requests: write
  contents: read
jobs:
  review:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
        with: { fetch-depth: 0 }
      - name: Install Argus
        run: npm install -g argus-ai
      - name: Run Review
        env:
          GEMINI_API_KEY: ${{ secrets.GEMINI_API_KEY }}
          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
        run: |
          argus-ai review \
            --diff origin/${{ github.base_ref }}..HEAD \
            --pr ${{ github.repository }}#${{ github.event.pull_request.number }} \
            --post-comments \
            --fail-on bug

MCP Setup

Claude Code

Add to ~/.mcp.json or project .mcp.json:

{
  "mcpServers": {
    "argus": {
      "command": "argus",
      "args": ["mcp", "--path", "/absolute/path/to/repo"]
    }
  }
}
Cursor / Windsurf

Add to generic MCP settings:

{
  "argus": {
    "command": "argus",
    "args": ["mcp", "--path", "."]
  }
}

Configuration

Run argus init to generate a .argus.toml.

Full Configuration Example
[review]
max_comments = 5
min_confidence = 90
include_suggestions = false

# Gemini (Zero Cost)
[llm]
provider = "gemini"
model = "gemini-2.0-flash"

[embedding]
provider = "gemini"
model = "text-embedding-004"

# Environment Variables:
# GEMINI_API_KEY, ANTHROPIC_API_KEY, OPENAI_API_KEY, VOYAGE_API_KEY

Architecture

                    ┌─────────────┐
                    │   argus     │
                    └──────┬──────┘
                           │
          ┌────────────────┼────────────────┐
          ▼                ▼                ▼
  ┌───────────────┐ ┌───────────┐ ┌──────────────┐
  │ argus-review  │ │ argus-mcp │ │  subcommands │
  └───────┬───────┘ └─────┬─────┘ └───────┬──────┘
          │               │               │
    ┌─────┴─────┬─────────┘               │
    ▼           ▼           ▼             ▼
┌─────────┐ ┌─────────┐ ┌──────────┐ ┌──────────┐
│ repomap │ │difflens │ │ codelens │ │ gitpulse │
└─────────┘ └─────────┘ └──────────┘ └──────────┘

Contributing

See CONTRIBUTING.md.

License

MIT


lib.rs:

Git history analysis: hotspots, temporal coupling, and knowledge silos.

Mines git history using git2 to detect high-churn hotspots, temporally coupled files, and knowledge silos (bus factor) to identify fragile code areas that deserve extra review attention.

Dependencies

~18MB
~388K SLoC