8 releases (4 breaking)
Uses new Rust 2024
| new 0.5.0 | Feb 9, 2026 |
|---|---|
| 0.4.0 | Jan 29, 2026 |
| 0.3.0 | Jan 28, 2026 |
| 0.2.3 | Jan 28, 2026 |
| 0.1.1 | Dec 4, 2025 |
#1593 in Debugging
Used in 2 crates
80KB
2K
SLoC
Description
Burn Central is a new way of using Burn. It aims at providing a central platform for experiment tracking, model sharing, and deployment for all Burn users!
This repository contains the SDK associated with the project. It offers macros that help attach to your code and send training data to our application. To use this project you must first create an account on the application.
Also needed to use this is the new burn-cli.
Installation
Add Burn Central to your Cargo.toml:
[dependencies]
burn-central = "0.5.0"
Quick Start
Currently, we only support training. Here's how to integrate Burn Central into your training workflow:
1. Register your training function
Use the #[register] macro to register your training function:
use burn_central::{
experiment::ExperimentRun,
macros::register,
runtime::{Args, ArtifactLoader, Model, MultiDevice},
};
use burn::prelude::*;
#[register(training, name = "mnist")]
pub fn training<B: AutodiffBackend>(
client: &ExperimentRun,
config: Args<YourExperimentConfig>,
MultiDevice(devices): MultiDevice<B>,
loader: ArtifactLoader<ModelArtifact<B>>,
) -> Result<Model<ModelArtifact<B::InnerBackend>>, String> {
// Log your configuration
client.log_config("Training Config", &training_config)
.expect("Logging config failed");
// Your training logic here...
let model = train::<B>(client, artifact_dir, &training_config, devices[0].clone())?;
Ok(Model(ModelArtifact {
model_record: model.into_record(),
config: training_config,
}))
}
2. Integrate with your Learner
To enable experiment tracking, you need to add three key components to your LearnerBuilder:
use burn_central::integration::{
RemoteMetricLogger,
remote_interrupter,
RemoteCheckpointRecorder,
};
use burn::train::{LearnerBuilder, metric::{AccuracyMetric, LossMetric}};
let learner = LearnerBuilder::new(artifact_dir)
.metric_train_numeric(AccuracyMetric::new())
.metric_valid_numeric(AccuracyMetric::new())
.metric_train_numeric(LossMetric::new())
.metric_valid_numeric(LossMetric::new())
// Remote metric logging
.with_metric_logger(RemoteMetricLogger::new(client))
// Remote checkpoint saving
.with_file_checkpointer(RemoteCheckpointRecorder::new(client))
// Remote interruption handling
.with_interrupter(remote_interrupter(client))
.num_epochs(config.num_epochs)
.summary()
.build(
model.init::<B>(&device),
optimizer.init(),
learning_rate,
LearningStrategy::SingleDevice(device),
);
3. Run your training
Once integrated, run your training using the burn-cli to automatically track metrics, checkpoints, and logs on Burn Central.
Requirements
- Rust 1.87.0 or higher
- A Burn Central account (create one at central.burn.dev)
- The burn-cli
Contribution
Contributions to this repository are welcome. You can also submit issues for features you would like to see in the near future.
License
Licensed under either of:
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
Dependencies
~61–100MB
~1.5M SLoC