#vector-database #hnsw #similarity #cli

bin+lib feather-db-cli

Command-line interface for Feather context-aware vector database - Part of Hawky.ai

4 releases (2 breaking)

new 0.3.0 Feb 15, 2026
0.2.1 Jan 24, 2026
0.2.0 Jan 24, 2026
0.1.0 Nov 22, 2025

#2579 in Database interfaces

MIT license

33KB
333 lines

Feather DB 🪶

Fast, lightweight context-aware vector database

Part of Hawky.ai - AI Native Digital Marketing OS

PyPI Crates.io Website GitHub

A fast, lightweight vector database built with C++ and HNSW (Hierarchical Navigable Small World) algorithm for approximate nearest neighbor search.

Features (v0.3.0)

  • 🪶 Multimodal Pockets: Store Text, Visual, and Audio vectors in a single Entity ID.
  • 🕸️ Contextual Graph: Native link(source, target) support for modeling relationships.
  • 🧠 Living Context: Adaptive "Sticky Memory" decay—frequently accessed items stay fresh.
  • 🚀 High Performance: Built with C++ and optimized HNSW algorithm (~0.05ms multimodal search).
  • 🔍 Filtered Search: Domain-logic filtering (by type, source, tags) during HNSW search.
  • 🐍 Python Integration: Native Python bindings with FilterBuilder support.
  • 🦀 Rust CLI: Enhanced CLI for metadata, linking, and filtered operations.

📖 Phase 3 Features Guide - Complete documentation for Multimodal & Graph capabilities.

PyPI Crates.io

Quick Start

Python Usage

import feather_db
import numpy as np

# Open or create a database
db = feather_db.DB.open("my_vectors.feather", dim=768)

# Add vectors
vector = np.random.random(768).astype(np.float32)
db.add(id=1, vec=vector)

# Search for similar vectors
query = np.random.random(768).astype(np.float32)
ids, distances = db.search(query, k=5)

print(f"Found {len(ids)} similar vectors")
for i, (id, dist) in enumerate(zip(ids, distances)):
    print(f"  {i+1}. ID: {id}, Distance: {dist:.4f}")

# Save the database
db.save()

### Context Usage (Phase 3)

```python
from feather_db import DB, Metadata, ContextType

# 1. Add Multimodal Data
db.add(id=100, vec=img_vec, modality="visual")
db.add(id=100, vec=txt_vec, modality="text") # Same ID!

# 2. Link Records (Graph)
db.link(source_id=100, target_id=999)

# 3. Search with Context
results = db.search(query_vec, k=5, modality="visual")
print(f"Linked to: {results[0].metadata.links}")

### C++ Usage

```cpp
#include "include/feather.h"
#include <vector>

int main() {
    // Open database
    auto db = feather::DB::open("my_vectors.feather", 768);
    
    // Add a vector
    std::vector<float> vec(768, 0.1f);
    db->add(1, vec);
    
    // Search
    std::vector<float> query(768, 0.1f);
    auto results = db->search(query, 5);
    
    for (auto [id, distance] : results) {
        std::cout << "ID: " << id << ", Distance: " << distance << std::endl;
    }
    
    return 0;
}

CLI Usage

# Create a new database
feather new my_db.feather --dim 768

# Add vectors from NumPy files
feather add my_db.feather 1 --npy vector1.npy
feather add my_db.feather 2 --npy vector2.npy

# Search for similar vectors
feather search my_db.feather --npy query.npy --k 10

Rust CLI

The CLI is available as a native binary for fast database management.

# Add with metadata
feather add --npy vector.npy --content "Hello world" --source "cli" my_db 123

# Search with filters
feather search --npy query.npy --type-filter 0 --source-filter "cli" my_db

Installation

pip install feather-db

Build from Source

Prerequisites

  • C++17 compatible compiler
  • Python 3.8+ (for Python bindings)
  • Rust 1.70+ (for CLI tool)
  • pybind11 (for Python bindings)

Steps

  1. Clone the repository

    git clone <repository-url>
    cd feather
    
  2. Install Python Package

    pip install .
    
  3. Build Rust CLI (Optional)

    cd feather-cli
    cargo build --release
    

Architecture

Core Components

  • feather::DB: Main C++ class providing vector database functionality
  • HNSW Index: Hierarchical Navigable Small World algorithm for fast ANN search
  • Binary Format: Custom storage format with magic number validation
  • Multi-language Bindings: Python (pybind11) and Rust (FFI) interfaces

File Format

Feather uses a custom binary format:

[4 bytes] Magic number: 0x46454154 ("FEAT")
[4 bytes] Version: 1
[4 bytes] Dimension
[Records] ID (8 bytes) + Vector data (dim * 4 bytes)

Performance Characteristics

  • Index Type: HNSW with L2 distance
  • Max Elements: 1,000,000 (configurable)
  • Construction Parameters: M=16, ef_construction=200
  • Memory Usage: ~4 bytes per dimension per vector + index overhead

API Reference

Python API

feather_db.DB

  • DB.open(path: str, dim: int = 768): Open or create database
  • add(id: int, vec: np.ndarray): Add vector with ID
  • search(query: np.ndarray, k: int = 5): Search k nearest neighbors
  • save(): Persist database to disk
  • dim(): Get vector dimension

C++ API

feather::DB

  • static std::unique_ptr<DB> open(path, dim): Factory method
  • void add(uint64_t id, const std::vector<float>& vec): Add vector
  • auto search(const std::vector<float>& query, size_t k): Search vectors
  • void save(): Save to disk
  • size_t dim() const: Get dimension

CLI Commands

  • feather new <path> --dim <dimension>: Create new database
  • feather add <db> <id> --npy <file>: Add vector from .npy file
  • feather search <db> --npy <query> --k <count>: Search similar vectors

Examples

Semantic Search with Embeddings

import feather_db
import numpy as np

# Create database for sentence embeddings
db = feather_db.DB.open("sentences.feather", dim=384)

# Add document embeddings
documents = [
    "The quick brown fox jumps over the lazy dog",
    "Machine learning is a subset of artificial intelligence",
    "Vector databases enable semantic search capabilities"
]

for i, doc in enumerate(documents):
    # Assume get_embedding() returns a 384-dim vector
    embedding = get_embedding(doc)
    db.add(i, embedding)

# Search for similar documents
query_embedding = get_embedding("What is machine learning?")
ids, distances = db.search(query_embedding, k=2)

for id, dist in zip(ids, distances):
    print(f"Document: {documents[id]}")
    print(f"Similarity: {1 - dist:.3f}\n")

Batch Processing

import feather_db
import numpy as np

db = feather_db.DB.open("large_dataset.feather", dim=512)

# Batch add vectors
batch_size = 1000
for batch_start in range(0, 100000, batch_size):
    for i in range(batch_size):
        vector_id = batch_start + i
        vector = np.random.random(512).astype(np.float32)
        db.add(vector_id, vector)
    
    # Periodic save
    if batch_start % 10000 == 0:
        db.save()
        print(f"Processed {batch_start + batch_size} vectors")

Performance Tips

  1. Batch Operations: Add vectors in batches and save periodically
  2. Memory Management: Consider vector dimension vs. memory usage trade-offs
  3. Search Parameters: Adjust k parameter based on your precision/recall needs
  4. File I/O: Use SSD storage for better performance with large databases

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

License

[Add your license information here]

Acknowledgments

Dependencies

~6MB
~113K SLoC