7 releases

Uses new Rust 2024

new 0.1.41 Feb 21, 2026
0.1.40 Feb 20, 2026

#950 in Database interfaces


Used in 2 crates

MIT license

37MB
137K SLoC

helios-persistence

Polyglot persistence layer for the Helios FHIR Server.

Overview

Traditional FHIR server implementations force all resources into a single database technology, creating inevitable trade-offs. A patient lookup by identifier, a population cohort query, relationship traversals through care teams, and semantic similarity searches for clinical trial matching all have fundamentally different performance characteristics, yet they're typically crammed into one system optimized for none of them.

Polyglot persistence is an architectural approach where different types of data and operations are routed to the storage technologies best suited for how that data will be accessed. Rather than accepting compromise, this pattern leverages specialized storage systems optimized for specific workloads:

Workload Optimal Technology Why
ACID transactions PostgreSQL Strong consistency guarantees
Document storage MongoDB Natural alignment with FHIR's resource model
Relationship traversal Neo4j Efficient graph queries for references
Full-text search Elasticsearch Optimized inverted indexes
Semantic search Vector databases Embedding similarity for clinical matching
Bulk analytics & ML Object Storage Cost-effective columnar storage

Polyglot Query Example

Consider a complex clinical query that combines multiple access patterns:

GET /Observation?patient.name:contains=smith&_text=cardiac&code:below=http://loinc.org|8867-4&_include=Observation:patient

This query requires:

  1. Chained search (patient.name:contains=smith) - Find observations where the referenced patient's name contains "smith"
  2. Full-text search (_text=cardiac) - Search narrative text for "cardiac"
  3. Terminology subsumption (code:below=LOINC|8867-4) - Find codes that are descendants of heart rate
  4. Reference resolution (_include=Observation:patient) - Include the referenced Patient resources

In a polyglot architecture, the CompositeStorage routes each component to its optimal backend:

// Conceptual flow - CompositeStorage coordinates backends
async fn search(&self, query: SearchQuery) -> SearchResult {
    // 1. Route chained search to graph database (efficient traversal)
    let patient_refs = self.neo4j.find_patients_by_name("smith").await?;

    // 2. Route full-text to Elasticsearch (optimized inverted index)
    let text_matches = self.elasticsearch.text_search("cardiac").await?;

    // 3. Route terminology query to terminology service + primary store
    let code_matches = self.postgres.codes_below("8867-4").await?;

    // 4. Intersect results and fetch from primary storage
    let observation_ids = intersect(patient_refs, text_matches, code_matches);
    let observations = self.postgres.batch_read(observation_ids).await?;

    // 5. Resolve _include from primary storage
    let patients = self.postgres.resolve_references(&observations, "patient").await?;

    SearchResult { resources: observations, included: patients }
}

No single database excels at all four operations. PostgreSQL would struggle with the graph traversal, Neo4j isn't optimized for full-text search, and Elasticsearch can't efficiently handle terminology hierarchies. Polyglot persistence lets each system do what it does best.

Architecture

helios-persistence/
├── src/
│   ├── lib.rs           # Main entry point and re-exports
│   ├── error.rs         # Comprehensive error types
│   ├── tenant/          # Multitenancy support
│   │   ├── id.rs        # Hierarchical TenantId
│   │   ├── context.rs   # TenantContext (required for all operations)
│   │   ├── permissions.rs # Fine-grained TenantPermissions
│   │   └── tenancy.rs   # TenancyModel configuration
│   ├── types/           # Core domain types
│   │   ├── stored_resource.rs    # Resource with persistence metadata
│   │   ├── search_params.rs      # Full FHIR search parameter model
│   │   ├── search_capabilities.rs # Search capability reporting
│   │   └── pagination.rs         # Cursor and offset pagination
│   ├── core/            # Storage trait hierarchy
│   │   ├── backend.rs      # Backend abstraction with capabilities
│   │   ├── storage.rs      # ResourceStorage (CRUD)
│   │   ├── versioned.rs    # VersionedStorage (vread, If-Match)
│   │   ├── history.rs      # History providers (instance/type/system)
│   │   ├── search.rs       # Search providers (basic, chained, include)
│   │   ├── transaction.rs  # ACID transactions with bundle support
│   │   ├── capabilities.rs # Runtime capability discovery
│   │   ├── bulk_export.rs  # FHIR Bulk Data Export traits
│   │   └── bulk_submit.rs  # FHIR Bulk Submit traits
│   ├── search/          # Search parameter infrastructure
│   │   ├── registry.rs     # SearchParameterRegistry (in-memory cache)
│   │   ├── loader.rs       # SearchParameterLoader (R4 standard params)
│   │   ├── extractor.rs    # FHIRPath-based value extraction
│   │   ├── converters.rs   # Type conversion utilities
│   │   ├── writer.rs       # Search index writer
│   │   ├── reindex.rs      # Reindexing operations
│   │   └── errors.rs       # Search-specific error types
│   ├── strategy/        # Tenancy isolation strategies
│   │   ├── shared_schema.rs       # tenant_id column + optional RLS
│   │   ├── schema_per_tenant.rs   # PostgreSQL search_path isolation
│   │   └── database_per_tenant.rs # Complete database isolation
│   ├── backends/        # Backend implementations
│   │   ├── sqlite/      # Reference implementation (complete)
│   │   │   ├── backend.rs      # SqliteBackend with connection pooling
│   │   │   ├── storage.rs      # ResourceStorage implementation
│   │   │   ├── transaction.rs  # TransactionProvider implementation
│   │   │   ├── schema.rs       # Schema migrations (v1-v6)
│   │   │   ├── search_impl.rs  # SearchProvider implementation
│   │   │   ├── bulk_export.rs  # BulkExportStorage implementation
│   │   │   ├── bulk_submit.rs  # BulkSubmitProvider implementation
│   │   │   └── search/         # Search query building
│   │   │       ├── query_builder.rs      # SQL query construction
│   │   │       ├── chain_builder.rs      # Chained parameter resolution
│   │   │       ├── filter_parser.rs      # _filter parameter parsing
│   │   │       ├── fts.rs                # FTS5 full-text search
│   │   │       ├── modifier_handlers.rs  # Search modifier logic
│   │   │       ├── strategy.rs           # Query strategy selection
│   │   │       ├── writer.rs             # Index writing
│   │   │       └── parameter_handlers/   # Type-specific handlers
│   │   │           ├── string.rs, token.rs, date.rs, number.rs
│   │   │           ├── quantity.rs, reference.rs, uri.rs, composite.rs
│   │   ├── postgres/       # PostgreSQL primary backend
│   │   │   ├── backend.rs      # PostgresBackend with connection pooling
│   │   │   ├── storage.rs      # ResourceStorage implementation
│   │   │   ├── transaction.rs  # TransactionProvider implementation
│   │   │   ├── schema.rs       # Schema DDL with migrations
│   │   │   ├── search_impl.rs  # SearchProvider implementation
│   │   │   ├── bulk_export.rs  # BulkExportStorage implementation
│   │   │   ├── bulk_submit.rs  # BulkSubmitProvider implementation
│   │   │   └── search/         # Search query building
│   │   │       ├── query_builder.rs  # SQL with $N params, ILIKE, TIMESTAMPTZ
│   │   │       └── writer.rs        # Search index writer
│   │   └── elasticsearch/  # Search-optimized secondary backend
│   │       ├── backend.rs      # ElasticsearchBackend with config
│   │       ├── storage.rs      # ResourceStorage for sync support
│   │       ├── schema.rs       # Index mappings and templates
│   │       ├── search_impl.rs  # SearchProvider, TextSearchProvider
│   │       └── search/         # ES Query DSL translation
│   │           ├── query_builder.rs      # FHIR SearchQuery → ES Query DSL
│   │           ├── fts.rs                # Full-text search queries
│   │           ├── modifier_handlers.rs  # :missing and other modifiers
│   │           └── parameter_handlers/   # Type-specific handlers
│   │               ├── string.rs, token.rs, date.rs, number.rs
│   │               ├── quantity.rs, reference.rs, uri.rs, composite.rs
│   ├── composite/       # Multi-backend coordination
│   │   ├── config.rs       # CompositeConfig and builder
│   │   ├── analyzer.rs     # Query feature detection
│   │   ├── router.rs       # Query routing logic
│   │   ├── cost.rs         # Cost-based optimization
│   │   ├── merger.rs       # Result merging strategies
│   │   ├── sync.rs         # Backend synchronization
│   │   ├── health.rs       # Health monitoring
│   │   └── storage.rs      # CompositeStorage implementation
│   └── advisor/         # Configuration advisor HTTP API
│       ├── server.rs       # Axum HTTP server
│       ├── handlers.rs     # API endpoint handlers
│       ├── analysis.rs     # Configuration analysis
│       ├── suggestions.rs  # Optimization suggestions
│       └── main.rs         # Advisor binary entry point
└── tests/               # Integration tests
    ├── common/          # Shared test utilities
    │   ├── harness.rs      # Test harness setup
    │   ├── fixtures.rs     # FHIR resource fixtures
    │   ├── assertions.rs   # Custom test assertions
    │   └── capabilities.rs # Capability test helpers
    ├── crud/            # CRUD operation tests
    │   ├── create_tests.rs, read_tests.rs, update_tests.rs
    │   ├── delete_tests.rs, conditional_tests.rs
    ├── search/          # Search parameter tests
    │   ├── string_tests.rs, token_tests.rs, date_tests.rs
    │   ├── number_tests.rs, quantity_tests.rs, reference_tests.rs
    │   ├── chained_tests.rs, include_tests.rs
    │   ├── modifier_tests.rs, pagination_tests.rs
    ├── versioning/      # Version history tests
    │   ├── vread_tests.rs, history_tests.rs
    │   └── optimistic_locking_tests.rs
    ├── transactions/    # Transaction tests
    │   ├── basic_tests.rs, bundle_tests.rs, rollback_tests.rs
    ├── multitenancy/    # Tenant isolation tests
    │   ├── isolation_tests.rs, cross_tenant_tests.rs
    ├── composite_routing_tests.rs   # Query routing tests
    ├── composite_polyglot_tests.rs  # Multi-backend tests
    ├── sqlite_tests.rs              # SQLite backend tests
    ├── postgres_tests.rs            # PostgreSQL backend tests
    └── elasticsearch_tests.rs       # Elasticsearch backend tests

Trait Hierarchy

The storage layer uses a progressive trait hierarchy inspired by Diesel:

Backend (connection management, capabilities)
    │
    ├── ResourceStorage (create, read, update, delete)
    │       │
    │       └── VersionedStorage (vread, update_with_match)
    │               │
    │               └── HistoryProvider (instance, type, system history)
    │
    ├── SearchProvider (search, search_count)
    │       │
    │       ├── IncludeProvider (_include resolution)
    │       ├── RevincludeProvider (_revinclude resolution)
    │       └── ChainedSearchProvider (chained parameters, _has)
    │
    └── TransactionProvider (begin, commit, rollback)

Features

  • Multiple Backends: SQLite, PostgreSQL, Cassandra, MongoDB, Neo4j, Elasticsearch, S3
  • Multitenancy: Three isolation strategies with type-level enforcement
  • Full FHIR Search: All parameter types, modifiers, chaining, _include/_revinclude
  • Versioning: Complete resource history with optimistic locking
  • Transactions: ACID transactions with FHIR bundle support
  • Capability Discovery: Runtime introspection of backend capabilities

Multitenancy

All storage operations require a TenantContext, ensuring tenant isolation at the type level. There is no way to bypass this requirement—the compiler enforces it.

Tenancy Strategies

Strategy Isolation Use Case
Shared Schema tenant_id column + optional RLS Multi-tenant SaaS with shared infrastructure
Schema-per-Tenant PostgreSQL schemas Logical isolation with shared database
Database-per-Tenant Separate databases Complete isolation for compliance

Hierarchical Tenants

use helios_persistence::tenant::TenantId;

let parent = TenantId::new("acme");
let child = TenantId::new("acme/research");
let grandchild = TenantId::new("acme/research/oncology");

assert!(child.is_descendant_of(&parent));
assert!(grandchild.is_descendant_of(&parent));
assert_eq!(grandchild.root().as_str(), "acme");

Permission Control

use helios_persistence::tenant::{TenantPermissions, Operation};

// Read-only access
let read_only = TenantPermissions::read_only();

// Custom permissions with compartment restrictions
let custom = TenantPermissions::builder()
    .allow_operations(vec![Operation::Read, Operation::Search])
    .allow_resource_types(vec!["Patient", "Observation"])
    .restrict_to_compartment("Patient", "123")
    .build();

Build search queries with full FHIR search support:

use helios_persistence::types::{
    SearchQuery, SearchParameter, SearchParamType, SearchValue,
    SearchModifier, SortDirective, IncludeDirective, IncludeType,
};

// Simple search
let query = SearchQuery::new("Patient")
    .with_parameter(SearchParameter {
        name: "name".to_string(),
        param_type: SearchParamType::String,
        modifier: Some(SearchModifier::Contains),
        values: vec![SearchValue::eq("smith")],
        chain: vec![],
    })
    .with_sort(SortDirective::parse("-_lastUpdated"))
    .with_count(20);

// With _include
let query_with_include = SearchQuery::new("Observation")
    .with_include(IncludeDirective {
        include_type: IncludeType::Include,
        source_type: "Observation".to_string(),
        search_param: "patient".to_string(),
        target_type: Some("Patient".to_string()),
        iterate: false,
    });

Backend Capability Matrix

The matrix below shows which FHIR operations each backend supports. This reflects the actual implementation status, not aspirational goals.

Note: Documentation links reference build.fhir.org, which contains the current FHIR development version. Some features marked as planned are new and may be labeled "Trial Use" in the specification.

Legend: ✓ Implemented | ◐ Partial | ○ Planned | ✗ Not planned | † Requires external service

Feature SQLite PostgreSQL MongoDB Cassandra Neo4j Elasticsearch S3
Core Operations
CRUD
Versioning (vread)
Optimistic Locking
Instance History
Type History
System History
Batch Bundles
Transaction Bundles
Conditional Operations
Conditional Patch
Delete History
Multitenancy
Shared Schema
Schema-per-Tenant
Database-per-Tenant
Row-Level Security
Search Parameters
String
Token
Reference
Date
Number
Quantity
URI
Composite
Search Modifiers
:exact
:contains
:text (full-text)
:not
:missing
:above / :below †○ †○
:in / :not-in †○ †○ †○
:of-type
:text-advanced †○ †○
Special Parameters
_text (narrative search)
_content (full content)
_filter (advanced filtering)
Advanced Search
Chained Parameters
Reverse Chaining (_has)
_include
_revinclude
Pagination
Offset
Cursor (keyset)
Sorting
Single field
Multiple fields
Bulk Operations
Bulk Export
Bulk Submit

Primary/Secondary Role Matrix

Backends can serve as primary (CRUD, versioning, transactions) or secondary (optimized for specific query patterns). When a secondary search backend is configured, the primary backend's search indexing is automatically disabled to avoid data duplication.

Configuration Primary Secondary Status Use Case
SQLite alone SQLite ✓ Implemented Development, testing, small deployments
SQLite + Elasticsearch SQLite Elasticsearch (search) ✓ Implemented Small prod with robust search
PostgreSQL alone PostgreSQL ✓ Implemented Production OLTP
PostgreSQL + Elasticsearch PostgreSQL Elasticsearch (search) ✓ Implemented OLTP + advanced search
PostgreSQL + Neo4j PostgreSQL Neo4j (graph) Planned Graph-heavy queries
Cassandra alone Cassandra Planned High write throughput
Cassandra + Elasticsearch Cassandra Elasticsearch (search) Planned Write-heavy + search
MongoDB alone MongoDB Planned Document-centric
S3 alone S3 Planned Archival/bulk storage
S3 + Elasticsearch S3 Elasticsearch (search) Planned Large-scale + search

Backend Selection Guide

Use Case Recommended Backend Rationale
Development & Testing SQLite Zero configuration, in-memory mode
Production OLTP PostgreSQL ACID transactions, JSONB, mature ecosystem
Document-centric MongoDB Natural FHIR alignment, flexible schema
Graph queries Neo4j Efficient relationship traversal
Full-text search Elasticsearch Optimized inverted indexes, analyzers
Bulk analytics S3 + Parquet Cost-effective, columnar, ML-ready
High write throughput Cassandra Distributed writes, eventual consistency

Feature Flags

Feature Description Driver
sqlite (default) SQLite (in-memory and file) rusqlite
postgres PostgreSQL with JSONB tokio-postgres
cassandra Apache Cassandra cdrs-tokio
mongodb MongoDB document store mongodb
neo4j Neo4j graph database neo4rs
elasticsearch Elasticsearch search elasticsearch
s3 AWS S3 object storage object_store

Building & Running Storage Backends

This section covers building the hfs binary with specific backend support and setting up the required infrastructure.

SQLite (Default)

Zero-configuration setup — no external dependencies required.

# Build with default SQLite backend
cargo build --bin hfs --release

# Run
./target/release/hfs

SQLite handles all CRUD operations, versioning, history, and search using its built-in FTS5 full-text search engine. Data is stored in fhir.db by default.

SQLite + Elasticsearch

SQLite handles CRUD, versioning, history, and transactions. Elasticsearch handles all search operations with:

  • Full-text search with relevance scoring (_text, _content)
  • All FHIR search parameter types (string, token, date, number, quantity, reference, URI, composite)
  • Advanced text search with stemming, boolean operators, and proximity matching (:text-advanced)
  • Cursor-based pagination via search_after

Prerequisites: A running Elasticsearch 8.x instance.

# Build with Elasticsearch support
cargo build --bin hfs --features sqlite,elasticsearch --release

# Start Elasticsearch (example using Docker)
docker run -d --name es -p 9200:9200 \
  -e "discovery.type=single-node" \
  -e "xpack.security.enabled=false" \
  elasticsearch:8.15.0

# Start the server
HFS_STORAGE_BACKEND=sqlite-elasticsearch \
HFS_ELASTICSEARCH_NODES=http://localhost:9200 \
  ./target/release/hfs

PostgreSQL

Full-featured relational backend for production deployments with JSONB storage, full-text search, and advanced multi-tenant isolation strategies.

  • Full CRUD operations with ACID transactions
  • Full-text search via PostgreSQL's tsvector/tsquery
  • All FHIR search parameter types (string, token, date, number, quantity, reference, URI, composite)
  • Chained parameters and reverse chaining (_has)
  • _include and _revinclude resolution
  • Multi-tenant support (shared schema, schema-per-tenant, database-per-tenant)

Prerequisites: A running PostgreSQL instance (14+).

# Build with PostgreSQL support
cargo build --bin hfs --features postgres --release

# Start PostgreSQL (example using Docker)
docker run -d --name pg -p 5432:5432 \
  -e POSTGRES_USER=hfs \
  -e POSTGRES_PASSWORD=hfs \
  -e POSTGRES_DB=fhir \
  postgres:16

# Start the server
HFS_STORAGE_BACKEND=postgres \
HFS_DATABASE_URL="postgresql://hfs:hfs@localhost:5432/fhir" \
  ./target/release/hfs

PostgreSQL + Elasticsearch

PostgreSQL handles CRUD, versioning, history, and transactions with ACID guarantees. Elasticsearch handles all search operations. Combines PostgreSQL's production-grade storage with Elasticsearch's search capabilities.

  • Full CRUD operations with ACID transactions via PostgreSQL
  • Full-text search with relevance scoring (_text, _content) via Elasticsearch
  • All FHIR search parameter types (string, token, date, number, quantity, reference, URI, composite)
  • Advanced text search with stemming, boolean operators, and proximity matching (:text-advanced)
  • Multi-tenant support (shared schema, schema-per-tenant, database-per-tenant)

Prerequisites: Running PostgreSQL (14+) and Elasticsearch 8.x instances.

# Build with PostgreSQL and Elasticsearch support
cargo build --bin hfs --features postgres,elasticsearch --release

# Start PostgreSQL (example using Docker)
docker run -d --name pg -p 5432:5432 \
  -e POSTGRES_USER=hfs \
  -e POSTGRES_PASSWORD=hfs \
  -e POSTGRES_DB=fhir \
  postgres:16

# Start Elasticsearch (example using Docker)
docker run -d --name es -p 9200:9200 \
  -e "discovery.type=single-node" \
  -e "xpack.security.enabled=false" \
  elasticsearch:8.15.0

# Start the server
HFS_STORAGE_BACKEND=postgres-elasticsearch \
HFS_DATABASE_URL="postgresql://hfs:hfs@localhost:5432/fhir" \
HFS_ELASTICSEARCH_NODES=http://localhost:9200 \
  ./target/release/hfs

How Search Offloading Works

When HFS_STORAGE_BACKEND is set to sqlite-elasticsearch or postgres-elasticsearch, the server:

  1. Creates the primary backend (SQLite or PostgreSQL) with search indexing disabled
  2. Creates an Elasticsearch backend sharing the primary backend's search parameter registry
  3. Wraps both in a CompositeStorage that routes:
    • All writes (create, update, delete, conditional ops, transactions) → primary backend, then syncs to ES
    • All reads (read, vread, history) → primary backend
    • All search operations → Elasticsearch

This avoids data duplication in the primary backend's search tables while providing Elasticsearch's superior search capabilities.

Elasticsearch Backend

The Elasticsearch backend serves as a search-optimized secondary in the composite storage layer. It handles all search parameter indexing, full-text search, and query execution when configured alongside a primary backend.

Configuration

use helios_persistence::backends::elasticsearch::ElasticsearchConfig;

let config = ElasticsearchConfig {
    nodes: vec!["http://localhost:9200".to_string()],
    index_prefix: "hfs".to_string(),
    username: None,
    password: None,
    timeout: std::time::Duration::from_secs(30),
    number_of_shards: 1,
    number_of_replicas: 1,
    max_result_window: 10000,
    refresh_interval: "1s".to_string(),
};
Option Default Description
nodes ["http://localhost:9200"] Elasticsearch node URLs
index_prefix "hfs" Prefix for all index names
username / password None Basic authentication credentials
timeout 30s Request timeout
number_of_shards 1 Number of primary shards per index
number_of_replicas 1 Number of replica shards per index
max_result_window 10000 Maximum from + size for offset pagination
refresh_interval "1s" How often new documents become searchable

Index Structure

Each tenant + resource type combination gets its own index: {prefix}_{tenant_id}_{resource_type} (e.g., hfs_acme_patient).

Documents contain:

  • Metadata: resource_type, resource_id, tenant_id, version_id, last_updated, is_deleted
  • Content: Raw FHIR JSON (stored but not indexed)
  • Full-text fields: narrative_text (from text.div), content_text (all string values)
  • Search parameters: Nested objects for each parameter type (string, token, date, number, quantity, reference, uri, composite)

All search parameter fields use "type": "nested" to ensure correct multi-value matching (e.g., system and code must co-occur in the same token object).

Search Offloading

When Elasticsearch is configured as a search secondary, the primary backend automatically disables its own search index population. For a SQLite + Elasticsearch configuration:

  • SQLite stores only the FHIR resource (the resources and resource_history tables)
  • SQLite does not populate search_index or resource_fts tables
  • Elasticsearch handles all search indexing and query execution
  • The composite storage layer routes search operations to Elasticsearch

This is controlled by the search_offloaded flag on the primary backend, which the composite layer sets automatically when a search secondary is configured.

Composite Usage

use std::collections::HashMap;
use std::sync::Arc;
use helios_persistence::composite::{CompositeConfig, CompositeStorage, DynStorage, DynSearchProvider};
use helios_persistence::core::BackendKind;
use helios_persistence::backends::sqlite::SqliteBackend;
use helios_persistence::backends::elasticsearch::{ElasticsearchBackend, ElasticsearchConfig};

// Create backends
let mut sqlite = SqliteBackend::new("fhir.db")?;
sqlite.set_search_offloaded(true);  // Disable SQLite search indexing
let sqlite = Arc::new(sqlite);

let es = Arc::new(ElasticsearchBackend::with_shared_registry(
    ElasticsearchConfig::default(),
    sqlite.search_registry().clone(),
)?);

// Build composite
let config = CompositeConfig::builder()
    .primary("sqlite", BackendKind::Sqlite)
    .search_backend("es", BackendKind::Elasticsearch)
    .build()?;

let mut backends = HashMap::new();
backends.insert("sqlite".to_string(), sqlite.clone() as DynStorage);
backends.insert("es".to_string(), es.clone() as DynStorage);

let mut search_providers = HashMap::new();
search_providers.insert("sqlite".to_string(), sqlite.clone() as DynSearchProvider);
search_providers.insert("es".to_string(), es.clone() as DynSearchProvider);

// with_full_primary() enables delegation of ConditionalStorage, VersionedStorage,
// InstanceHistoryProvider, and BundleProvider through the composite layer.
let composite = CompositeStorage::new(config, backends)?
    .with_search_providers(search_providers)
    .with_full_primary(sqlite);

Implementation Status

Phase 1: Core Types ✓

  • Error types with comprehensive variants
  • Tenant types (TenantId, TenantContext, TenantPermissions)
  • Stored resource types with versioning metadata
  • Search parameter types (all FHIR parameter types)
  • Pagination types (cursor and offset)

Phase 2: Core Traits ✓

  • Backend trait with capability discovery
  • ResourceStorage trait (CRUD operations)
  • VersionedStorage trait (vread, If-Match)
  • History provider traits (instance, type, system)
  • Search provider traits (basic, chained, _include, terminology)
  • Transaction traits (ACID, bundles)
  • Capabilities trait (CapabilityStatement generation)

Phase 3: Tenancy Strategies ✓

  • Shared schema strategy with RLS support
  • Schema-per-tenant strategy with PostgreSQL search_path
  • Database-per-tenant strategy with pool management

Phase 4: SQLite Backend ✓

  • Connection pooling (r2d2)
  • Schema migrations
  • ResourceStorage implementation
  • VersionedStorage implementation
  • History providers (instance, type, system)
  • TransactionProvider implementation
  • Conditional operations (conditional create/update/delete)

Transaction & Batch Support ◐

FHIR transaction and batch bundle processing.

Backend Support: Transaction bundles require ACID support. SQLite supports transactions. Cassandra, Elasticsearch, and S3 do not support transactions (batch only). See the capability matrix above.

Implemented Features:

  • Transaction bundles - Atomic all-or-nothing processing with automatic rollback on failure
  • Batch bundles - Independent entry processing (failures don't affect other entries)
  • Processing order - Entries processed per FHIR spec: DELETE → POST → PUT/PATCH → GET
  • Reference resolution - urn:uuid: references automatically resolved to assigned IDs after creates
  • fullUrl support - Track temporary identifiers for intra-bundle references
  • Conditional headers - If-Match, If-None-Match, If-None-Exist in bundle entries
  • Error responses - Transaction failures return OperationOutcome with failing entry index
  • Response ordering - Results returned in original request entry order

Not Yet Implemented:

Gap Description Spec Reference
Conditional reference resolution References like Patient?identifier=12345 should resolve via search Transaction
PATCH method PATCH operations in bundle entries return 501 Patch
Duplicate resource detection Same resource appearing twice in transaction should fail Transaction
Prefer header handling return=minimal, return=representation, return=OperationOutcome Prefer
History bundle acceptance Servers SHOULD accept history bundles for replay History
Version-specific references resolve-as-version-specific extension support References
lastModified in response Bundle entry responses should include lastModified Transaction

SQLite Search Implementation ✓

The SQLite backend includes a complete FHIR search implementation using pre-computed indexes:

Search Parameter Registry & Extraction:

  • SearchParameterRegistry - In-memory cache of active SearchParameter definitions
  • SearchParameterLoader - Loads embedded R4 standard parameters at startup
  • SearchParameterExtractor - FHIRPath-based value extraction using helios-fhirpath
  • Dynamic SearchParameter handling - POST/PUT/DELETE to SearchParameter updates the registry

Search Index & Query:

  • Pre-computed search_index table for fast queries
  • All 8 parameter type handlers (string, token, date, number, quantity, reference, URI, composite)
  • Modifier support (:exact, :contains, :missing, :not, :identifier, :below, :above)
  • Prefix support for date/number/quantity (eq, ne, gt, lt, ge, le, sa, eb, ap)
  • _include and _revinclude resolution
  • Cursor-based and offset pagination
  • Single-field sorting

Full-Text Search (FTS5):

  • resource_fts FTS5 virtual table for full-text indexing
  • Narrative text extraction from text.div with HTML stripping
  • Full content extraction from all resource string values
  • _text parameter - searches narrative content
  • _content parameter - searches all resource text
  • :text-advanced modifier - advanced FTS5-based search with:
    • Porter stemming (e.g., "run" matches "running")
    • Boolean operators (AND, OR, NOT)
    • Phrase matching ("heart failure")
    • Prefix search (cardio*)
    • Proximity matching (NEAR operator)
  • Porter stemmer tokenization for improved search quality
  • Automatic FTS indexing on resource create/update/delete

Chained Parameters & Reverse Chaining:

  • N-level forward chains (e.g., Observation?subject.organization.name=Hospital)
  • Nested reverse chains / _has (e.g., Patient?_has:Observation:subject:code=1234-5)
  • Type modifiers for ambiguous references (e.g., subject:Patient.name=Smith)
  • SQL-based chain resolution using efficient nested subqueries
  • Registry-based type inference with fallback heuristics
  • Configurable depth limits (default: 4, max: 8)

Reindexing:

  • ReindexableStorage trait for backend-agnostic reindexing
  • ReindexOperation with background task execution
  • Progress tracking and cancellation support
  • $reindex HTTP endpoint (planned for server layer)

Capability Reporting:

  • SearchCapabilityProvider implementation
  • Runtime capability discovery from registry

Bulk Operations:

  • BulkExportStorage trait implementation (FHIR Bulk Data Access IG)
    • System-level export (/$export)
    • Patient-level export (/Patient/$export)
    • Group-level export (/Group/[id]/$export)
    • Job lifecycle management (pending, in-progress, completed, failed, cancelled)
    • Streaming NDJSON batch generation
    • Type filtering and _since parameter support
  • BulkSubmitProvider trait implementation (FHIR Bulk Submit)
    • Submission lifecycle management
    • Manifest creation and management
    • Entry processing with validation
    • Rollback support for failed submissions
  • Schema migration v5 to v6 with 7 new tables for bulk operations

Phase 5: Elasticsearch Backend ✓

  • Backend structure with connection management and health checks
  • Index schema and mappings (nested objects for multi-value search params)
  • ResourceStorage implementation for composite sync support
  • Search query translation (FHIR SearchQuery → ES Query DSL)
  • All 8 parameter type handlers (string, token, date, number, quantity, reference, URI, composite)
  • Full-text search (_text, _content, :text-advanced)
  • Modifier support (:exact, :contains, :text, :not, :missing, :above, :below, :of-type)
  • _include and _revinclude resolution
  • Cursor-based (search_after) and offset pagination
  • Multi-field sorting
  • Search offloading: when Elasticsearch is the search secondary, the primary backend skips search index population

Phase 5b: PostgreSQL Backend ✓

  • Connection pooling (deadpool-postgres)
  • Schema migrations with JSONB storage
  • ResourceStorage implementation (CRUD)
  • VersionedStorage implementation (vread, If-Match)
  • History providers (instance, type, system)
  • TransactionProvider with configurable isolation levels
  • Conditional operations (conditional create/update/delete)
  • SearchProvider with all parameter types
  • ChainedSearchProvider and reverse chaining (_has)
  • Full-text search (tsvector/tsquery)
  • _include and _revinclude resolution
  • BulkExportStorage and BulkSubmitProvider
  • Search offloading support
  • ReindexableStorage implementation

Phase 5+: Additional Backends (Planned)

  • Cassandra backend (wide-column, partition keys)
  • MongoDB backend (document storage, aggregation)
  • Neo4j backend (graph queries, Cypher)
  • S3 backend (bulk export, object storage)

Phase 6: Composite Storage ✓

  • Query analysis and feature detection
  • Multi-backend coordination with primary-secondary model
  • Cost-based query routing
  • Result merging strategies
  • Secondary backend synchronization
  • Health monitoring
  • Configuration Advisor HTTP API
  • Full primary delegation via with_full_primary() — CompositeStorage now implements ConditionalStorage, VersionedStorage, InstanceHistoryProvider, and BundleProvider by delegating to the primary backend

Composite Storage

The composite storage layer enables polyglot persistence by coordinating multiple database backends for optimal FHIR resource storage and querying.

Design Principles

  1. Single Source of Truth: One primary backend handles all FHIR resource CRUD operations, versioning, and history. This is the authoritative store.

  2. Feature-Based Routing: Queries are automatically routed based on detected features (chained search, full-text, terminology) to appropriate backends.

  3. Eventual Consistency: Secondary backends may lag behind primary (configurable sync/async modes with documented consistency guarantees).

  4. Graceful Degradation: If a secondary backend is unavailable, the system falls back to primary with potentially degraded performance.

Valid Backend Configurations

Configuration Primary Secondary(s) Status Use Case
SQLite-only SQLite None ✓ Implemented Development, small deployments
SQLite + ES SQLite Elasticsearch ✓ Implemented Small prod with robust search
PostgreSQL-only PostgreSQL None ✓ Implemented Production OLTP
PostgreSQL + ES PostgreSQL Elasticsearch ✓ Implemented OLTP + advanced search
PostgreSQL + Neo4j PostgreSQL Neo4j Planned Graph-heavy queries
S3 + ES S3 Elasticsearch Planned Large-scale, cheap storage

Quick Start

use helios_persistence::composite::{
    CompositeConfigBuilder, BackendRole, SyncMode,
};
use helios_persistence::core::BackendKind;

// Development configuration (SQLite-only)
let dev_config = CompositeConfigBuilder::new()
    .primary("sqlite", BackendKind::Sqlite)
    .build()?;

// Production configuration (PostgreSQL + Elasticsearch)
let prod_config = CompositeConfigBuilder::new()
    .primary("pg", BackendKind::Postgres)
    .search_backend("es", BackendKind::Elasticsearch)
    .sync_mode(SyncMode::Asynchronous)
    .build()?;

Query Routing

Queries are automatically analyzed and routed to optimal backends:

Feature Detection Routed To
Basic search Standard parameters Primary
Chained parameters patient.name=Smith Graph backend
Full-text _text, _content Search backend
Terminology :above, :below, :in Terminology backend
Writes All mutations Primary only
_include/_revinclude Include directives Primary
use helios_persistence::composite::{QueryAnalyzer, QueryFeature};
use helios_persistence::types::SearchQuery;

let analyzer = QueryAnalyzer::new();

// Analyze a complex query
let query = SearchQuery::new("Observation")
    .with_parameter(/* _text=cardiac */);

let analysis = analyzer.analyze(&query);
println!("Features: {:?}", analysis.features);
println!("Complexity: {}", analysis.complexity_score);

Result Merging Strategies

When queries span multiple backends, results are merged using configurable strategies:

Strategy Behavior Use Case
Intersection Results must match all backends (AND) Restrictive queries
Union Results from any backend (OR) Inclusive queries
PrimaryEnriched Primary results with metadata from secondaries Standard search
SecondaryFiltered Filter secondary results through primary Search-heavy queries

Synchronization Modes

Mode Latency Consistency Use Case
Synchronous Higher Strong Critical data requiring consistency
Asynchronous Lower Eventual Read-heavy workloads
Hybrid Balanced Configurable Search indexes sync, others async
use helios_persistence::composite::SyncMode;

// Synchronous: All secondaries updated in same transaction
let sync = SyncMode::Synchronous;

// Asynchronous: Update via event stream
let async_mode = SyncMode::Asynchronous;

// Hybrid: Sync for search indexes, async for others
let hybrid = SyncMode::Hybrid { sync_for_search: true };

Cost-Based Optimization

The cost estimator uses benchmark-derived costs to make routing decisions:

use helios_persistence::composite::{CostEstimator, QueryCost};
use helios_persistence::types::SearchQuery;

let estimator = CostEstimator::with_defaults();
let query = SearchQuery::new("Patient");

// Estimate cost for each backend
let costs = estimator.estimate_all(&query, &config);
for (backend_id, cost) in costs {
    println!("{}: total={}, latency={}ms",
        backend_id, cost.total, cost.estimated_latency_ms);
}

// Get cheapest backend
let best = estimator.cheapest_backend(&query, &config.backends);

Health Monitoring

The health monitor tracks backend availability and triggers failover:

use helios_persistence::composite::{HealthMonitor, HealthConfig};
use std::time::Duration;

let config = HealthConfig {
    check_interval: Duration::from_secs(30),
    timeout: Duration::from_secs(5),
    failure_threshold: 3,  // Mark unhealthy after 3 failures
    success_threshold: 2,  // Mark healthy after 2 successes
};

let monitor = HealthMonitor::new(config);

// Check backend health
if monitor.is_healthy("primary") {
    // Use backend
}

// Get aggregate status
let status = monitor.all_status();
println!("Healthy: {}/{}", status.healthy_count(), status.backends.len());

Configuration Advisor

The configuration advisor is an HTTP API for analyzing and optimizing composite storage configurations.

Running the Advisor

# Build with advisor feature
cargo build -p helios-persistence --features advisor --bin config-advisor

# Run the advisor
./target/debug/config-advisor

# With custom settings
ADVISOR_HOST=0.0.0.0 ADVISOR_PORT=9000 ./target/debug/config-advisor

API Endpoints

Endpoint Method Description
/health GET Health check
/backends GET List available backend types
/backends/{kind} GET Get capabilities for a backend type
/analyze POST Analyze a configuration
/validate POST Validate a configuration
/suggest POST Get optimization suggestions
/simulate POST Simulate query routing

Example: Analyze Configuration

curl -X POST http://localhost:8081/analyze \
  -H "Content-Type: application/json" \
  -d '{
    "config": {
      "backends": [
        {"id": "primary", "role": "Primary", "kind": "Sqlite"}
      ]
    }
  }'

Example: Get Suggestions

curl -X POST http://localhost:8081/suggest \
  -H "Content-Type: application/json" \
  -d '{
    "config": {
      "backends": [
        {"id": "primary", "role": "Primary", "kind": "Sqlite"}
      ]
    },
    "workload": {
      "read_ratio": 0.8,
      "write_ratio": 0.2,
      "fulltext_search_ratio": 0.3,
      "queries_per_day": 10000
    }
  }'

Example Configurations

Development (SQLite-only)

let config = CompositeConfigBuilder::new()
    .primary("sqlite", BackendKind::Sqlite)
    .build()?;
let config = CompositeConfigBuilder::new()
    .primary("pg", BackendKind::Postgres)
    .search_backend("es", BackendKind::Elasticsearch)
    .sync_mode(SyncMode::Asynchronous)
    .build()?;

Graph-Heavy Workloads

let config = CompositeConfigBuilder::new()
    .primary("pg", BackendKind::Postgres)
    .graph_backend("neo4j", BackendKind::Neo4j)
    .sync_mode(SyncMode::Hybrid { sync_for_search: false })
    .build()?;

Large-Scale Archival

let config = CompositeConfigBuilder::new()
    .primary("s3", BackendKind::S3)
    .search_backend("es", BackendKind::Elasticsearch)
    .sync_mode(SyncMode::Synchronous)
    .build()?;

Troubleshooting

Query not routing to expected backend:

  • Enable debug logging: RUST_LOG=helios_persistence::composite=debug
  • Use the analyzer to inspect detected features: analyzer.analyze(&query)
  • Check backend capabilities match required features

High sync lag:

  • Reduce batch size in SyncConfig
  • Increase sync workers
  • Consider synchronous mode for critical data

Failover not triggering:

  • Check health check interval isn't too long
  • Verify failure threshold is appropriate
  • Ensure failover_to targets are configured

Cost estimates seem wrong:

  • Run Criterion benchmarks to calibrate costs
  • Use with_benchmarks() on CostEstimator
  • Check feature multipliers in CostConfig

License

MIT

Dependencies

~25–55MB
~790K SLoC