# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a006450 Showing 1-1 of 1 %I A006450 M2477 #176 Sep 08 2022 08:44:34 %S A006450 3,5,11,17,31,41,59,67,83,109,127,157,179,191,211,241,277,283,331,353, %T A006450 367,401,431,461,509,547,563,587,599,617,709,739,773,797,859,877,919, %U A006450 967,991,1031,1063,1087,1153,1171,1201,1217,1297,1409,1433,1447,1471 %N A006450 Prime-indexed primes: primes with prime subscripts. %C A006450 A000040 = A006450 U A007821. - _Juri-Stepan Gerasimov_, Sep 24 2009 %C A006450 Subsequence of A175247 (primes (A000040) with noncomposite (A008578) subscripts), a(n) = A175247(n+1). - _Jaroslav Krizek_, Mar 13 2010 %C A006450 Primes p such that p and pi(p) are both primes. - _Juri-Stepan Gerasimov_, Jul 14 2011 %C A006450 Sum_{n>=1} 1/a(n) converges. In fact, Sum_{n>N} 1/a(n) < 1/log(N), by the integral test. - _Jonathan Sondow_, Jul 11 2012 %C A006450 The number of such primes not exceeding x > 0 is pi(pi(x)). I conjecture that the sequence a(n)^(1/n) (n = 1,2,3,...) is strictly decreasing. This is an analog of the Firoozbakht conjecture on primes. - _Zhi-Wei Sun_, Aug 17 2015 %C A006450 Limit_{n->infinity} a(n)/(n*(log(n))^2) = 1. Proof: By Cipolla's asymptotic formula, prime(n) ~ L(n) + R(n), where L(n)/n = log(n) + log(log(n)) - 1 and R(n)/n decreases logarithmically to 0. Hence, for large n, a(n) = prime(prime(n)) ~ L(L(n)+R(n)) + R(L(n)+R(n)) = n*(log(n))^2 + r(n), where r(n) grows as O(n*log(n)*log(log(n))). The rest of the proof is trivial. The convergence is very slow: for k = 1,2,3,4,5,6, sqrt(a(10^k)/10^k)/log(10^k) evaluates to 2.055, 1.844, 1.695, 1.611, 1.545, and 1.493, respectively. - _Stanislav Sykora_, Dec 09 2015 %D A006450 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A006450 J. S. Kimberley, Table of n, a(n) for n = 1..100000 %H A006450 R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900 [math.GM], 2014. %H A006450 Jonathan Bayless, Dominic Klyve, and Tomás Oliveira e Silva, New Bounds and Computations on Prime-Indexed Primes, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A43, 2013. %H A006450 K. A. Broughan and A. R. Barnett, On the subsequence of primes having prime subscripts, JIS 12 (2009) 09.2.3. %H A006450 Paul Cooijmans, Numbers. %H A006450 Paul Cooijmans, Short Test For Genius. %H A006450 R. E. Dressler and S. T. Parker, Primes with a prime subscript, J. ACM 22 (1975) 380-381. %H A006450 N. Fernandez, An order of primeness, F(p) %H A006450 N. Fernandez, An order of primeness [cached copy, included with permission of the author] %H A006450 N. Fernandez, More terms of this and other sequences related to A049076. %H A006450 A. B. Frizell, The permutations of the natural numbers can not be well ordered, Bull. Amer. Math. Soc. 22 (1915), no. 2, 71-73. %H A006450 Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33. %H A006450 Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021. %H A006450 Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012. %H A006450 J. Shallit, Letter to N. J. A. Sloane, Oct. 1975 %H A006450 Eric Weisstein's World of Mathematics, Prime formulas, see Cipolla formula. %F A006450 a(n) = prime(prime(n)) = A000040(A000040(n)). - _Juri-Stepan Gerasimov_, Sep 24 2009 %F A006450 a(n) > n*(log(n))^2, as prime(n) > n*log(n) by Rosser's theorem. - _Jonathan Sondow_, Jul 11 2012 %F A006450 a(n)/log(a(n)) ~ prime(n). - _Thomas Ordowski_, Mar 30 2015 %F A006450 Sum_{n>=1} 1/a(n) is in the interval (1.04299, 1.04365) (Bayless et al., 2013). - _Amiram Eldar_, Oct 15 2020 %e A006450 a(5) = 31 because a(5) = p(p(5)) = p(11) = 31. %p A006450 seq(ithprime(ithprime(i)),i=1..50); # Uli Baum (Uli_Baum(AT)gmx.de), Sep 05 2007 %p A006450 # For Maple code for the prime/nonprime compound sequences (listed in cross-references) see A003622. - _N. J. A. Sloane_, Mar 30 2016 %t A006450 Table[ Prime[ Prime[ n ] ], {n, 100} ] %o A006450 (Magma) [ NthPrime(NthPrime(n)): n in [1..51] ]; // _Jason Kimberley_, Apr 02 2010 %o A006450 (PARI) i=0;forprime(p=2,1e4,if(isprime(i++),print1(p", "))) \\ _Charles R Greathouse IV_, Jun 10 2011 %o A006450 (PARI) a=vector(10^3,n,prime(prime(n))) \\ _Stanislav Sykora_, Dec 09 2015 %o A006450 (Haskell) %o A006450 a006450 = a000040 . a000040 %o A006450 a006450_list = map a000040 a000040_list %o A006450 -- _Reinhard Zumkeller_, Jan 12 2013 %o A006450 (Python) %o A006450 from sympy import prime %o A006450 def a(n): return prime(prime(n)) %o A006450 print([a(n) for n in range(1, 52)]) # _Michael S. Branicky_, Aug 11 2021 %o A006450 (Python) # much faster version for initial segment of sequence %o A006450 from sympy import nextprime, isprime %o A006450 def aupton(terms): %o A006450 alst, p, pi = [], 2, 1 %o A006450 while len(alst) < terms: %o A006450 if isprime(pi): alst.append(p) %o A006450 p, pi = nextprime(p), pi+1 %o A006450 return alst %o A006450 print(aupton(10000)) # _Michael S. Branicky_, Aug 11 2021 %Y A006450 Primes for which A049076 > 1. %Y A006450 Cf. A000040, A007821, A038580, A049090, A049202, A049203, A057847, A057849, A057850, A057851, A058332, A093047. %Y A006450 Cf. A185723 and A214296 for numbers and primes that are sums of distinct a(n); cf. A213356 and A185724 for those that are not. %Y A006450 Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270795, A270796, A102616. %K A006450 easy,nice,nonn %O A006450 1,1 %A A006450 _Jeffrey Shallit_, Nov 25 1975 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE