# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a051021
Showing 1-1 of 1
%I A051021 #88 Dec 01 2024 10:04:03
%S A051021 1,3,0,6,3,7,7,8,8,3,8,6,3,0,8,0,6,9,0,4,6,8,6,1,4,4,9,2,6,0,2,6,0,5,
%T A051021 7,1,2,9,1,6,7,8,4,5,8,5,1,5,6,7,1,3,6,4,4,3,6,8,0,5,3,7,5,9,9,6,6,4,
%U A051021 3,4,0,5,3,7,6,6,8,2,6,5,9,8,8,2,1,5,0,1,4,0,3,7,0,1,1,9,7,3,9,5,7,0,7,2,9
%N A051021 Decimal expansion of Mills's constant, assuming the Riemann Hypothesis is true.
%C A051021 Not known to be rational or irrational. See Saito (2024) for a new result. - _Charles R Greathouse IV_, Jul 18 2013, _Hugo Pfoertner_, May 01 2024
%D A051021 T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
%D A051021 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
%H A051021 Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 641 terms from Tin Apato)
%H A051021 C. K. Caldwell, Mills's Constant [Gives 6000 terms assuming the Riemann Hypothesis.]
%H A051021 Chris K. Caldwell and Yuanyou Chen, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
%H A051021 Christian Elsholtz, Unconditional Prime-representing Functions, Following Mills, arXiv:2004.01285 [math.NT], 2020.
%H A051021 James Grime and Brady Haran, Awesome Prime Number Constant, Numberphile video (2013).
%H A051021 Brian Hayes, Pumping the Primes, bit-player, Aug 19 2015.
%H A051021 Aminu Alhaji Ibrahim and Sa’idu Isah Abubaka, Aunu Integer Sequence as Non-Associative Structure and Their Graph Theoretic Properties, Advances in Pure Mathematics, 2016, 6, 409-419.
%H A051021 Bernard Montaron, Exponential prime sequences, arXiv:2011.14653 [math.NT], 2020.
%H A051021 Robert P. Munafo, Notable Properties of Specific Numbers.
%H A051021 Simon Plouffe, The calculation of p(n) and pi(n), arXiv:2002.12137 [math.NT], 2020.
%H A051021 Kota Saito, Mills' constant is irrational, arXiv:2404.19461 [math.NT], 2024.
%H A051021 László Tóth, A Variation on Mills-Like Prime-Representing Functions, arXiv:1801.08014 [math.NT], 2018.
%H A051021 Eric Weisstein's World of Mathematics, Mills' Constant.
%H A051021 Eric Weisstein's World of Mathematics, Prime Formulas.
%e A051021 1.3063778838630806904686144926026057129167845851567136443680537599664340537668...
%t A051021 RealDigits[ Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8), 10, 111][[1]] (* _Robert G. Wilson v_, Nov 14 2012 *)
%o A051021 (PARI) A051021_upto(N=99)=localprec(N+9);digits(10^N*sqrtn(A051254(N=logint(N,3)+2),3^N)\1) \\ _M. F. Hasler_, Sep 11 2024
%Y A051021 Cf. A051254.
%K A051021 nonn,cons
%O A051021 1,2
%A A051021 _Eric W. Weisstein_
%E A051021 More terms from _Robert G. Wilson v_, Sep 08 2000
%E A051021 More terms from Tin Apato (tinapto(AT)yahoo.es), Dec 12 2007
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE