login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Search: a006450 -id:a006450
     Sort: relevance | references | number | modified | created      Format: long | short | data
Remainder when 2nd order prime pp(n) = A006450(n) is divided by n-th prime = A000040(n).
+20
6
1, 2, 1, 3, 9, 2, 8, 10, 14, 22, 3, 9, 15, 19, 23, 29, 41, 39, 63, 69, 2, 6, 16, 16, 24, 42, 48, 52, 54, 52, 74, 84, 88, 102, 114, 122, 134, 152, 156, 166, 168, 1, 7, 13, 19, 23, 31, 71, 71, 73, 73, 65, 77, 91, 79, 91, 109, 115, 125, 137, 149, 155, 185, 197, 203, 197, 235
OFFSET
1,2
LINKS
FORMULA
a(n) = prime^2(n) mod prime(n) = A006450(n) mod A000040(n).
EXAMPLE
a(4) = 3 since prime(prime(4)) (mod prime(4)) = prime(7) (mod 7) = 17 (mod 7) = 3. - Michael De Vlieger, Mar 25 2017
MAPLE
a:= n-> (p-> irem(ithprime(p), p))(ithprime(n)):
seq(a(n), n=1..70); # Alois P. Heinz, Oct 09 2015
MATHEMATICA
Table[Mod @@ Map[Nest[Prime, n, #] &, {2, 1}], {n, 65}] (* Michael De Vlieger, Mar 25 2017 *)
PROG
(PARI) a(n) = prime(prime(n)) % prime(n); \\ Michel Marcus, Mar 25 2017
KEYWORD
nonn,look
AUTHOR
Labos Elemer, Oct 08 2002
STATUS
approved
Remainder when 2nd order prime pp(n)=A006450(n) is divided by n.
+20
3
0, 1, 2, 1, 1, 5, 3, 3, 2, 9, 6, 1, 10, 9, 1, 1, 5, 13, 8, 13, 10, 5, 17, 5, 9, 1, 23, 27, 19, 17, 27, 3, 14, 15, 19, 13, 31, 17, 16, 31, 38, 37, 35, 27, 31, 21, 28, 17, 12, 47, 43, 43, 39, 31, 26, 45, 13, 1, 17, 23, 17, 53, 11, 15, 1, 53, 10, 25, 64, 41, 38, 41, 68, 33, 59, 63, 65
OFFSET
1,3
LINKS
FORMULA
a(n) = A006450(n) mod n.
MATHEMATICA
Table[Mod[Prime[Prime[n]], n], {n, 100}] (* Vincenzo Librandi, Jul 10 2017 *)
PROG
(PARI) a(n) = prime(prime(n)) % n; \\ Michel Marcus, Jul 09 2017
(Magma) [NthPrime(NthPrime(n)) mod(n): n in [1..100]]; // Vincenzo Librandi, Jul 10 2017
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 08 2002
STATUS
approved
"Secondary twin primes": a(n) = A006450(A096477(n)).
+20
3
3, 5, 11, 17, 41, 59, 179, 191, 431, 461, 599, 617, 1031, 1787, 2027, 2081, 2381, 2549, 3299, 4091, 4217, 4421, 4517, 4787, 5021, 5441, 5651, 8999, 9041, 9461, 10457, 13217, 13709, 13757, 14591, 14867, 15641, 16061, 16451, 16901, 17189, 17291
OFFSET
1,1
LINKS
EXAMPLE
a(10) = 461 since prime(10) = 89 and prime(89 + 1) - prime(89) = 463 - 461 = 2.
MATHEMATICA
Prime[Prime[Flatten[Position[Table[Prime[Prime[n]+1] -Prime[Prime[n]], {n, 1, 1000}], 2]]]]
CROSSREFS
Subsequence of A001359.
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 23 2004
STATUS
approved
a(n) = pip(n)^pip(n) where pip(n) is the n-th prime-indexed prime (see A006450).
+20
2
27, 3125, 285311670611, 827240261886336764177, 17069174130723235958610643029059314756044734431, 1330877630632711998713399240963346255985889330161650994325137953641
OFFSET
1,1
MATHEMATICA
#^#&/@Prime[Prime[Range[7]]] (* Harvey P. Dale, Jun 03 2023 *)
PROG
(PARI) piptopip(n) = { local(x, y); for(x=1, n, y=pip(x)^pip(x); print1(y", "); ) } pip() = { return(prime(prime(n))) }
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Mar 06 2005
STATUS
approved
Squares of A006450: a(n) = prime(prime(n))^2.
+20
1
9, 25, 121, 289, 961, 1681, 3481, 4489, 6889, 11881, 16129, 24649, 32041, 36481, 44521, 58081, 76729, 80089, 109561, 124609, 134689, 160801, 185761, 212521, 259081, 299209, 316969, 344569, 358801, 380689, 502681, 546121, 597529, 635209
OFFSET
1,1
LINKS
MATHEMATICA
Table[Prime[Prime[n]]^2, {n, 50}] (* Vincenzo Librandi, May 26 2016 *)
PROG
(PARI) a(n) = prime(prime(n))^2 \\ Michel Marcus, Jun 30 2013
(Magma) [NthPrime(NthPrime(n))^2: n in [1..40]]; // Vincenzo Librandi, May 26 2016
CROSSREFS
Cf. A006450.
KEYWORD
nonn,easy
AUTHOR
Jorge Coveiro, Apr 14 2004
STATUS
approved
Cubes of A006450: a(n) = prime(prime(n))^3.
+20
1
27, 125, 1331, 4913, 29791, 68921, 205379, 300763, 571787, 1295029, 2048383, 3869893, 5735339, 6967871, 9393931, 13997521, 21253933, 22665187, 36264691, 43986977, 49430863, 64481201, 80062991, 97972181, 131872229, 163667323
OFFSET
1,1
LINKS
MATHEMATICA
Table[Prime[Prime[n]]^3, {n, 50}] (* Vincenzo Librandi, May 26 2016 *)
PROG
(PARI) a(n) = prime(prime(n))^3 \\ Michel Marcus, Jun 30 2013
(Magma) [NthPrime(NthPrime(n))^3: n in [1..40]]; // Vincenzo Librandi, May 26 2016
CROSSREFS
Cf. A006450.
KEYWORD
nonn,easy
AUTHOR
Jorge Coveiro, Apr 14 2004
STATUS
approved
Second differences of A006450.
+20
1
4, 0, 8, -4, 8, -10, 8, 10, -8, 12, -8, -10, 8, 10, 6, -30, 42, -26, -8, 20, -4, 0, 18, -10, -22, 8, -12, 6, 74, -62, 4, -10, 38, -44, 24, 6, -24, 16, -8, -8, 42, -48, 12, -14, 64, 32, -88, -10, 10
OFFSET
1,1
LINKS
R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900, 2014. See Table 2.
MATHEMATICA
Differences[Table[Prime[Prime[n]], {n, 1, 100}], 2] (* Jean-François Alcover, Oct 09 2018 *)
PROG
(PARI) f(n) = prime(prime(n))
a(n) = f(n+2)-2*f(n+1)+f(n)
vector(50, n, a(n)) \\ Jens Kruse Andersen, Jul 18 2014
CROSSREFS
Cf. A006450.
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jul 17 2014
STATUS
approved
Number of ways to write n as the sum of distinct super-primes (A006450).
+20
1
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 0, 1, 3, 0, 1, 2, 0, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 0, 3, 2, 0, 3, 2, 2, 2, 2, 2, 3, 1, 2, 3, 0, 2, 3, 1, 4
OFFSET
1,31
COMMENTS
a(n) > 0 for n > 96 (cf. Dressler, Parker, 1975).
LINKS
R. E. Dressler and S. T. Parker, Primes with a Prime Subscript, Journal of the ACM, Vol. 22, No. 3 (1975), 380-381.
Wikipedia, Super-prime
FORMULA
G.f.: prod(k>=1, 1 + x^A006450(k) ). [Joerg Arndt, Apr 06 2016]
EXAMPLE
There are two ways to write 31 as the sum of distinct super-primes: 31 (a single summand, as 31 is itself a super-prime) and 17 + 11 + 3 (three summands), so a(31) = 2.
PROG
(PARI) isokp(pt) = {for (k=1, #pt, if (! isprime(pt[k]) || !isprime(primepi(pt[k])), return (0)); ); #pt == #Set(pt); }
a(n) = {if (n < 3, return (0)); nb = 0; forpart(pt = n, if (isokp(pt), nb++), [3, n]); nb; } \\ Michel Marcus, Apr 06 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Apr 05 2016
EXTENSIONS
More terms from Michel Marcus, Apr 06 2016
STATUS
approved
Integers n such that A002110(n) + A006450(n) is prime.
+20
0
1, 2, 3, 4, 5, 6, 7, 12, 45, 64, 121, 144, 238, 261, 415, 2296, 2847
OFFSET
1,2
COMMENTS
Corresponding primes are 5, 11, 41, 227, 2341 and 30071.
1, 4, 64, 121, 144 are squares for initial terms of sequence. Are there any other squares in this sequence?
EXAMPLE
a(1) = 1 because 2 + 3 = 5 is prime.
a(2) = 2 because 2*3 + 5 = 11 is prime.
a(3) = 3 because 2*3*5 + 11 = 41 is prime.
MATHEMATICA
Select[Range@ 500, PrimeQ[Product[Prime@ k, {k, #}] + Prime@ Prime@ #] &] (* Michael De Vlieger, Dec 02 2015 *)
PROG
(PARI) lista(nn) = {s = 1; for(k=1, nn, s *= prime(k); if(ispseudoprime(s + prime(prime(k))), print1(k, ", ")); ); }
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Dec 02 2015
STATUS
approved
Primeth recurrence: a(n+1) = a(n)-th prime.
(Formerly M0734)
+10
285
1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041, 3657500101, 88362852307, 2428095424619, 75063692618249, 2586559730396077, 98552043847093519, 4123221751654370051, 188272405179937051081, 9332039515881088707361, 499720579610303128776791, 28785866289100396890228041
OFFSET
0,2
COMMENTS
A007097(n) = Min {k : A109301(k) = n} = the first k whose rote height is n, the level set leader or minimum inverse function corresponding to A109301. - Jon Awbrey, Jun 26 2005
Lubomir Alexandrov informs me that he studied this sequence in his 1965 notebook. - N. J. A. Sloane, May 23 2008
a(n) is the Matula-Goebel number of the rooted path tree on n+1 vertices. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, Feb 18 2012
Conjecture: log(a(1))*log(a(2))*...*log(a(n)) ~ a(n). - Thomas Ordowski, Mar 26 2015
REFERENCES
Lubomir Alexandrov, unpublished notes, circa 1960.
L. Longeri, Towards understanding nature and the aesthetics of prime numbers, https://www.longeri.org/prime/nature.html [Broken link, but leave the URL here for historical reasons]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Lubomir Alexandrov, On the nonasymptotic prime number distribution, arXiv:math.NT/9811096, 1998.
Lubomir Alexandrov, "The Eratosthenes Progression p(k+1)=π^{-1}(p(k)), k=0,1,2,..., p(0)=1,4,6,... Determines an Inner Prime Number Distribution Law", Second Int. Conf. "Modern Trends in Computational Physics", Jul 24-29, 2000, Dubna, Russia, Book of Abstracts, p. 19. Available at arXiv:math/0105154 [math.NT], 2001.
Lubomir Alexandrov, Prime Number Sequences And Matrices Generated By Counting Arithmetic Functions, Communications of the Joint Institute of Nuclear Research, E5-2002-55, Dubna, 2002.
J. Awbrey, Riffs and Rotes
Peter R. Cappello, A Note on a Bijection between Natural Numbers and Rooted Trees, 4th SIAM Conference on Discrete Mathematics, June 1988. See section 3 set S codes of paths (codes are per Matula-Goebel).
N. Fernandez, An order of primeness [cached copy, included with permission of the author]
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
FORMULA
A049084(a(n+1)) = a(n). - Reinhard Zumkeller, Jul 14 2013
a(n)/a(n-1) ~ log(a(n)) ~ prime(n). - Thomas Ordowski, Mar 26 2015
a(n) = prime^{[n]}(1), with the prime function prime(k) = A000040(k), with a(0) = 1. See the name and the programs. - Wolfdieter Lang, Apr 03 2018
Sum_{n>=1} 1/a(n) = A292667. - Amiram Eldar, Oct 15 2020
MAPLE
seq((ithprime@@n)(1), n=0..10); # Peter Luschny, Oct 16 2012
MATHEMATICA
NestList[Prime@# &, 1, 16] (* Robert G. Wilson v, May 30 2006 *)
PROG
(PARI) print1(p=1); until(, print1(", "p=prime(p))) \\ M. F. Hasler, Oct 09 2011
(Haskell)
a007097 n = a007097_list !! n
a007097_list = iterate a000040 1 -- Reinhard Zumkeller, Jul 14 2013
(GAP) P:=Filtered([1..60000], IsPrime);;
a:=[1];; for n in [2..10] do a[n]:=P[a[n-1]]; od; a; # Muniru A Asiru, Dec 22 2018
CROSSREFS
Row 1 of array A114537.
Left edge of tree A227413, right edge of A246378.
Cf. A078442, A109082 (left inverses).
Subsequence of A245823.
KEYWORD
nonn,hard,nice
EXTENSIONS
a(15) corrected and a(16)-a(17) added by Paul Zimmermann
a(18)-a(19) found by David Baugh using a program by Xavier Gourdon and Andrey V. Kulsha, Oct 25 2007
a(20)-a(21) found by Andrey V. Kulsha using a program by Xavier Gourdon, Oct 02 2011
a(22) from Henri Lifchitz, Oct 14 2014
a(23) from David Baugh using Kim Walisch's primecount, May 16 2016
STATUS
approved

Search completed in 0.103 seconds