
Advanced LDDTool Techniques

There are some advanced techniques available via the <Ingest_LDD> document and 
the LDDTool that might be useful in some complex cases. 


Schematron Rules

Schematron rules can be used to check the sort of contingency relationships (i.e., "If A, then B") that 
XML Schema is not particularly good at. PDS also uses Schematron to define enumerated value lists 
rather than XML Schema largely for the diagnostic benefits - we can include the list of valid values in 
the Schematron error message.


Schematron rules are applied to an XML document via a two-step process involving style sheet 
translations (XSL). There are some subtleties to how and when Schematron rules are triggered, so if 
you're going to start writing Schematron rules yourself you should take some time to become familiar 
with the details of the standard. There are also multiple forms of the standard with a couple of 
significant differences in capabilities for the more advanced Schematron programmer. PDS requires 
ISO Schematron, which is available as a "Publicly Available Standard" (i.e., free if you promise to 
behave yourself) from this ISO website: http://standards.iso.org/ittf/PubliclyAvailableStandards. 
Search for "Schematron".


A limited capability to define additional Schematron rules as part of LDDTool processing is provided 
via the <DD_Rule> class. DD_Rule classes may be added after the <DD_Class> definitions in 
your <Ingest_LDD> document. Details for filling out the class are on the Filling Out the DD Rule 
Class page.


Choice List

The XML Schema Definitions (XSD) language is very strictly ordered, but it does provide one 
exception to this rule: the choice construct.


What Is It?

The choice structure is a mechanism that allows your label writers to use one or more of a list of 
attributes or subclasses at a particular point in a local class structure. In those cases where more 
than one list item may be included, the items may occur in any order, and may themselves be 
repeated. In other words, if I define a choice list containing A, B, and C, and allow label writers to 
select up to three of these to include, they can include B three times, or C then A and then C again, 
and either case would be considered equally valid (along with all the other permutations, of course).


So, on the one hand the choice construct defeats some of the validation we get from using XSD, but 
on the other hand sometimes you cannot practically code all the explicit contingencies you might 
have in certain scenarios.


On the whole, you should have some compelling reasons to resort to a choice construct in a local 
dictionary because of the impact on validation. "I keep getting errors from having my attributes out of 
order" is not a "compelling reason".


How Do I Do It?

The basic technique is to use a single <DD_Association> class to list all the possible attributes or 
subclasses that may be included at that point in the containing class being defined. Within that 
single DD_Association:


• Repeat the <local_identifier> tag for each attribute or class you want to include in 
the choice list.


http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20DD%20Rule%20Class.pdf
https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20DD%20Rule%20Class.pdf


• Somewhere in that list of local_identifiers, add this:

<local_identifier>XSChoice#</local_identifier>


Usage notes:

• A choice list defined in this way may contain only one kind of referenced object - either all 

attributes or all classes, but not both in the same DD_Association. (This is a current 
constraint on Ingest_LDD and LDDTool.)


• The <minimum_occurrences> and <maximum_occurrences> values you provide for 
this DD_Association refer to the total number of selections that may be made by a label 
writer from the list of things corresponding to the local_identifier values. If you 
specify minimum_occurrences of 0 (zero), then including nothing from the selection list is a 
valid option for a label.


• There is currently no way to specify in the Ingest_LDD file, or in the output XSD file, that 
multiple selections may be made, but no single option may be repeated. You can add a 
Schematron rule via the DD_Rule class to make that constraint.


"Exactly One"

One popular use for a choice list is to code an "exactly one of the following" option by a creating a 
multi-element choice list that requires exactly one of its contents be present. In order for this to work 
as desired, make sure that the <minimum_occurrences> and <maximum_occurrences> attributes for 
the DD_Class are both set to 1 (one).


Any Block

Any blocks are used within the shared PDS4 namespaces to pass validation control from one 
dictionary to another within a defined class.


What Is It?

The XSD any construct specifies that from this point until the closing tag of the current XML element, 
any elements from any namespace may be included and will not be subject to validation by the rules 
defined for the current namespace (they are required to be syntactically valid XML).


(You can also include elements from the current namespace, and they will be subject to validation as 
though they had occurred in their usual place in their label. This, however, is an excellent way to 
generate almost completely intractable error messages, and should be avoided.)


How Do I Do It?

As the last association in your <DD_Class> (yes, it absolutely must be the "last" association, since 
anything after an any statement in the schema is ignored with respect to the defining class 
definition), add one more <DD_Association> class with a <local_identifier> value of "XSAny#". The 
remaining attributes of DD_Class must be there, but will be ignored.


Note that:

• If a schema validator can identify what namespaces the elements in the any area come from, 

and has a schema to validate them against, it will do so and report errors accordingly. If you plan 
to include any blocks in your local dictionary classes, you should expect that your PDS standards 
reviewers will require that they only reference attributes and classes from namespaces for which 
PDS administers the defining schema.




• Using the any construct abdicates control of both content and validation for that part of your 
mission labels. If you do not have direct and significant influence over what might be thrown into 
this unregulated label area, you really should not be leaving this particular barn door open.


Cross-Referencing Namespace Elements

There are a couple of times when this is the preferred method for defining classes, but on the whole 
this should be used with extreme caution.


What Is It?

A namespace cross-reference invokes an attribute or class defined in another dictionary (we will call 
these external elements) for use in a class that you are defining in your own dictionary. This external 
element will appear in labels as it appears in its own namespace, preserving its own namespace 
references, just interpolated into your class.


The XML technique involved is to change the namespace of reference at some local level. There are 
a couple of different ways to do this, including using namespace abbreviation prefixes (like "pds:" or 
"disp:") on the tags.


How Do I Do It?

At the point in the DD_Class definition where you want to include the external element (attribute or 
subclass), add a <DD_Attribute> class as you would if the element was in this dictionary, with one 
exception: form the <local_identifier> as "ns.name", where ns is the PDS4 reserved namespace 
abbreviation for the external dictionary, and name is the name of the attribute or class you want to 
reference as it appears in the dictionary XSD file. Note that the namespace abbreviation separator in 
this case is a full stop ('.'), and not the usual colon (':').


When Should I Do It?

There are a small number of standard places where you should do this in order to take advantage of 
useful conventions established in the PDS-controlled namespaces. These are:


Referencing Other PDS4 Archive Products

If you want to create a link from a class you're defining to a PDS4 product somewhere else in the 
archive, use the <Internal_Reference> class defined in the pds: dictionary. (Note that you will also 
need to define values for the <pds:reference_type> attribute in your own Schematron file to go with 
this use.) Internal_Reference has a standard format recognized by PDS4 tools that enables direct 
access to the referenced product via a PDS registry, which is a handy capability to be able to offer 
end-users. To use it, add a <DD_Attribute>' class with a <local_identifier> value of 
"pds.Internal_Reference" and a <reference_type> of "component_of".

Cross-referencing Classes in the Same Label

If you need to explicitly link, for example, a set of parameters to a data object, use 
the <pds:Local_Internal_Reference> to reference the <pds:local_identifier> of the target class (in the 
example case, a data object class like <Array_2D_Image>. As with pds:Internal_Reference, you'll 
need to define values for the <pds:local_reference_type> attribute as well. As 
for pds:Internal_Reference, you include a <DD_Attribute> class with a local_identifier of 
"pds.Local_Internal_Reference".

Referencing an External Source

If you need to include a formal reference to an external source (perhaps a published article, or a 
source product from a non-PDS4 archive), include the <pds:External_Reference> class using the 
same method as in the previous two cases. In this case there is no 



corresponding pds:reference_type to define. The advantage of using this class for external 
references is that it makes it possible for PDS tools to retrieve these references and report them to 
bibliographic services like the ADS to help in generating citation counts for the referenced works.


When You Should Not Do This

Sometimes, in very limited circumstances, there may be compelling reasons for a mission dictionary 
to directly reference elements defined in other namespaces. Here's why you should not do this in 
most typical mission dictionaries:


• You have no control over changes in the referenced namespace.

• You must assume the author of the other namespace has no knowledge of or interest in your 

cross-references.

• You must assume there is no commitment on the part of the author of the other namespace 

to maintain their elements in a way that will not invalidate your cross-reference, technically or 
informationally.


• You are requiring end-users to go outside of your own dictionary to understand classes 
defined in your dictionary.


Even references to discipline dictionaries may be problematic if that dictionary has not specifically 
designed and designated its classes for this sort of use. If you really think you need to pull in 
elements from dictionaries you do not control, talk to your PDS node consultant first.


And then do not do it.


If you find yourself managing a large mission in which teams or instruments are each creating their 
own dictionaries, in addition to the overarching mission dictionary, then you might have both good 
reasons and sufficient control to reasonably reference the mission dictionary from the instrument 
dictionaries, or conversely. In which case, have at it - and contact your PDS node consultant if you 
need advice.


More Reasons Why You Should Not Do This

This is an extremely experimental capability that has not been fleshed out as yet. In particular, note 
that:


• The namespace abbreviation in itself is not sufficient to identify a namespace, and even 
within the reserved PDS4 namespace abbreviations, it carries no information about 
versioning. All versions of a namespace have the same reserved abbreviation.


• If you write and validate your dictionary based on assumptions related to a particular version 
of the namespace you're referencing, you have no way at present to prevent erroneous 
linking to a different and potentially incompatible version of the same external namespace in 
labels. Worse, the labels may attempt to reference two different versions of the same 
namespace. At best, this generates validation warnings that may or may not be safely 
ignored. At worst, validation will be completely and wordlessly undermined as the software 
environment decides which version of the namespace should apply.


• LDDTool decides which version of the core dictionary or a discipline dictionary it will pull its 
definitions from - you cannot alter that. Which version of any particular namespace that it will 
reference depends on what is programmed into the specific version of the LDDTool you're 
using. This may not be the same version of the discipline dictionary referenced directly in 
labels for other reasons. In fact, if you have updated your version of LDDTool, it might not 
even be the same version that was referenced the last time you ran the tool.


• Some classes you include with the [namespace_id].[element] syntax will be included by type, 
others by reference - and which method is employed depends on what is in that other 
schema. Which method is used also affects which namespace each part of the definition 



lives in, which in turn affects how your Schematron rules should be formulated. If you are 
not extremely detail-oriented in your approach to testing your output schemas, an error in 
namespace can go undetected indefinitely.



	Schematron Rules
	Choice List
	What Is It?
	How Do I Do It?
	"Exactly One"

	Any Block
	What Is It?
	How Do I Do It?

	Cross-Referencing Namespace Elements
	What Is It?
	How Do I Do It?
	When Should I Do It?
	When You Should Not Do This
	More Reasons Why You Should Not Do This


