Prijeđi na sadržaj

Nuklearna fisija – razlika između verzija

Izvor: Wikipedija
Uklonjeni sadržaj Dodani sadržaj
m robot Mijenja: cy:Ymholltiad niwclear; kozmetičke promjene
Bluelink 1 book for verifiability (20240721)) #IABot (v2.0.9.5) (GreenC bot
 
(Nisu prikazane 42 međuverzije 16 korisnika)
Red 1: Red 1:
[[Datoteka:Nuclear fission.svg|Šematski prikaz fisije. Neutron pogađa atom uranijuma 235, koji se cijepa na dva nova atoma, oslobađajući 3 neutrona za dalju reakciju fisije.|thumb|right]]
[[Datoteka:Nuclear fission.svg|mini|desno|300px|Jedna od mogućih reakcija nuklearne fisije: atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisijski produkti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV).]]
[[Datoteka:Stdef2.png|300px|desno|mini|Model tekuće kapljice atomske jezgre]]


'''Nuklearna fisija''' ([[latinski|lat]]. ''fissio'', razdvajanje, dijeljenje) je ona vrsta [[Nuklearna reakcija|nuklearne reakcije]], koja nastaje kad se [[Atomska jezgra|jezgra atoma]] nekog [[Kemijski element|kemijskog elementa]] cijepa na dva '''fisijska produkta''' ili '''fisiona fragmenta''' sličnih [[masa]], uz emisiju jednog ili više [[neutron]]a, te velike količine [[energija|energije]]. Tijekom procesa fisije dolazi do oslobađanja energije, jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Spontana fisija jezgre događa se vrlo sporo, no kod nekih teških jezgri moguće je inicirati bržu reakciju fisije djelovanjem sporih neutrona s tom jezgrom. Takve jezgre koje su podložne fisiji sporim neutronima nazivamo [[Fisilni materijali|fisilnim]] jezgrama. Osim jezgara [[izotop]]a uranija-233 i uranija-235, te plutonija-239, fisibilna je i jezgra izotopa plutonija-241. Jedini fisilni izotop koji postoji u prirodi je izotop uranija-235. Energija oslobođena fisijom uranija-235 iznosi približno 200 [[Elektronvolt|MeV]]. Dvije lakše jezgre koje nastaju fisijom radioaktivne su i zovu se fisijski fragmenti ili fisijski produkti.
'''Nuklearna fisija''', takođe poznata i kao atomska fisija, je proces u [[Subatomska fizika|nuklearnoj fizici]] u kojem se [[jezgro]] jednog [[atom]]a deli na dva ili više manjih jezgara kao fisionih produkata, i obično još nekoliko nusproduktnih [[čestica]]. Dakle, fisija je jedna vrsta transmutacije [[Hemijski element|hemijskih elemenata]]. Nusprodukti fisije mogu biti [[neutron]]i, zatim [[foton]]i i to obično u obliku [[Gama zraci|gama zraka]], kao i drugi delići nuklearne fragmentacije kakve su na primer [[Beta čestica|beta čestice i]] [[Alfa čestica|alfa čestice]]. Fisija težih [[hemijski element|elemenata]] je jedna [[egzotermna reakcija]] pri kojoj može da se oslobodi korisna [[energija]] u prilično velikim iznosima i to u dva oblika; kao energija [[gama zrak]]a i kao [[kinetička energija]] fragmenata fisije (zagrevajući masivni materijal unutar kojeg se fisija odigrava).


Da bi se nuklearna fisija mogla koristiti kao energetski izvor potrebno je stvoriti uvjete u kojima će se ta reakcija događati kontinuirano. Kontinuiranu fisijsku reakciju moguće je ostvariti jer se fisijom fisibilnih izotopa stvaraju dva do tri neutrona koji mogu izazvati fisiju u drugim jezgrama fisibilnih izotopa. Takva se reakcija naziva fisijska [[nuklearna lančana reakcija]]. Mase fisijskih produkata se najčešće odnose u omjeru 3:2, a vjerovatnost da dođe do nuklearne fisije je 2 do 4 puta na 1000 događaja.<ref>Arora M. G., Singh M.: "Nuclear Chemistry", publisher = Anmol Publications, [http://books.google.com/books?id=G3JA5pYeQcgC&pg=PA202] 1994.</ref><ref>Saha Gopal: "Fundamentals of Nuclear Pharmacy", publisher = Springer Science+Business Media, [http://books.google.com/books?id=bEXqI4ACk-AC&pg=PA11] 2010.</ref>
Energija nuklearne fisije koristi se za proizvodnju [[Električna energija|električne energije u]] [[Nuklearni reaktor|nuklearnim reaktorima]], ali služi i za održavanje eksplozije u nuklearnom oružju ([[Atomska bomba|atomskoj bombi]]). Fisija je praktična kao izvor energije u nuklearnim elektranama zato što neki materijali, koje nazivamo nuklearnim gorivom, proizvode nove [[neutron]]e kao delove fisionog procesa, a takođe i započinju novu fisiju kada su pogođeni slobodnim neutronima. Nuklearno gorivo može da bude deo samoodržavajuće nuklearne reakcije obično nazvane [[lančana reakcija]], koja oslobađa energiju kontrolisanom brzinom u nuklearnom reaktoru ili veoma velikom nekontrolisanom brzinom u nuklearnim oružjima.


Nuklearna se fisija u nekih teških jezgara odvija spontano, kao oblik radioaktivnog raspada, tako da se teška jezgra cijepa na dva dijela, tj. X → A + B. Vjerojatnost događanja spontane fisije je vrlo mala. Dovođenjem jezgre u pobuđeno stanje vjerojatnost se fisije znatno povećava. To je stanje najlakše postići u neparnih jezgara uranija-235, uranija-233 i plutonija-239, gdje apsorpcija i sasvim sporog neutrona dovodi jezgru u pobuđenje dovoljno za fisiju.
Iznos slobodne ili raspoložive energije koja je sadržana u nuklearnom gorivu je milion puta veća od slobodne energije koja se sadrži u istoj masi hemijskog goriva, kao što je na primer benzin, što čini nuklearnu fisiju veoma atraktivnim izvorom energije; jedino što su otpadni produkti nuklearne fisije takođe veoma [[radioaktivnost|radioaktivni]] i ostaju takvi [[milenijum]]ima, čime se uvećava problem nuklearnog otpada. Problem uskladištenja nuklearnog otpada i ogromni destruktivni potencijal nuklearnog oružja u ogromnom su neskladu sa željenim svojstvima fisije kao izvora energije, što daje stalno podstrek novim političkim debatama koje se i dalje vode oko pitanja nuklearne energije.


Jezgre koje su nastale fisijama zovu se fisijski fragmenti ili fisijski produkti. Fisijski produkti su [[Radioaktivnost|radioaktivni]] i glavni su izvor radioaktivnosti u istrošenom [[nuklearno gorivo|nuklearnom gorivu]]. Procesom fisije dolazi do oslobađanja energije jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Energija oslobođena fisijom jezgre izotopa uranija-235 iznosi približno 200 MeV i prenosi se na okolni medij u obliku [[toplina|toplinske]] energije.
{{stub}}
{{Nuklearna tehnologija}}


Energija dobivena fisijom jednog [[kilogram]]a izotopa uranija-235 jednaka je [[energija|energiji]] koja bi se dobila izgaranjem 1 300 [[tona]] [[ugljen]]a ili 1 350 tona [[Nafta|nafte]]. Da bi se taj veliki energijski potencijal fisije mogao iskoristiti kao energetski izvor potrebno je omogućiti kontinuirano odvijanje fisijske reakcije. Dva do tri neutrona koji se oslobađaju tijekom fisijske reakcije mogu izazvati reakciju fisije na drugim jezgrama fisibilnog izotopa i na taj način nastaviti nuklearnu lančanu reakciju fisije. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na '''kontrolirani način''' u posebnim uređajima koji se zovu [[nuklearni reaktor]]i.<ref>[http://www.fer.unizg.hr/_download/repository/UNE_compl_r1_-_ver_4_DF.pdf]{{Dead link|date=August 2021 |bot=InternetArchiveBot |fix-attempted=yes }} "Uvod u nuklearnu energetiku", Prof. dr. sc. Danilo Feretić, 2011.</ref>
[[Kategorija:Fizika]]

==Povijest==
Godine 1919. [[Ernest Rutherford]] je, bombardirajući [[dušik]] [[alfa-čestica]]ma izveo prvu nuklearnu pretvorbu (transmutaciju) jednog [[kemijski element|kemijskog elementa]] u drugi. Pri procesu je nastao [[kisik]], tako je izvršena prva [[nuklearna reakcija]]: dušik-14 + α (alfa-čestica) → kisik-17 + p ([[proton]]). 1932. Rutherfordove kolege [[John Cockcroft]] i [[Ernest Walton]] su bombardirali atom [[litij]]a-7 s protonima, koji se raspao na dvije alfa-čestice. Taj pokus je nazvan '''cijepanje atoma'''.

Nakon što je [[James Chadwick]] otkrio [[neutron]] 1932., [[Talijani|talijanski]] [[fizičar]] [[Enrico Fermi]] 1934. ozračuje [[uranij]] sporim neutronima i zapazio je da se kao proizvod javlja nekoliko novih [[atom]]a, koji se razlikuju po [[Vrijeme poluraspada|vremenu poluraspada]]. Fermi je smatrao da je bombardiranje uranija-235 sporim neutronima izazvalo nuklearnu reakciju, pri kojoj su nastali novi radioaktivni elementi, s atomskim brojem iznad 92, nestabilni kemijski elementi s rednim brojem 93, 94 i većim brojevima, koji se nazivaju '''transuranijski elementi'''.

===Uranij-235===
[[Uranij]] je u to vrijeme bio posljednji [[kemijski element]] u [[Periodni sustav elemenata|periodnom sustavu elemenata]]. Na osnovu pouzdanih rezultata koji su dobiveni pomoću kemijskog razdvajanja i proučavanja [[beta-čestica]], utvrđeno je da produkti nuklearne pretvorbe uranija-235 sa sporim neutronima, nisu transuranijski elementi, već elementi iz sredine periodnog sustava. [[Otto Hahn]] i Fritz Strassmann su 1938. otkrili da je jedan od produkata [[barij]]. [[Marie Curie]] je u svojim pokusima 1939. dobila [[lantan]]. Ni jedna grupa znanstvenika nije dobila transuranijske elemente, a kasnije su Otto Hahn i Fritz Strassmann dobili [[itrij]], [[stroncij]], [[kripton]], [[ksenon]] i druge elemente iz sredine perodnog sustava.

Ovu zagonetku s nuklearnom reakcijom uranija-235 pravilno je riješila [[Lise Meitner]] i njen nećak [[Otto Robert Frisch]]. Oni su 1939. pretpostavili da se uranij-235 hvatanjem sporog neutrona cijepa na dva fisijska fragmenta, jedan je atom [[barij]]a, a drugi atom [[kripton]]a. Ovu nuklearnu reakciju pri kojoj se uranija-235 cijepa na dva približno jednaka fisijska fragmenta su nazvali '''nuklearna fisija'''. Oni su ukazali da su fragmenti nuklearne fisije vrlo nestabilni i da zbog odnosa neutrona i protona u njima, nastaje čitav niz beta-raspada. Utvrđeno je da se atomske mase fisijskih fragmenata nalaze u području s atomskom masom od 70 do 160, i da nuklearna fisija nije simetrična, pa se mase fisijskih fragmenata odnose u omjeru 2:3.
[[Datoteka:Binding energy curve - common isotopes.svg|300px|mini|desno|Krivulja prosječne energije vezanja po nukleonu]]
[[Datoteka:U235 Fission cross section.png|300px|mini|desno|Nuklearni udarni presjek uranija-235 u ovisnosti od brzine ili energije (temperature) neutrona]]
[[Datoteka:Fission chain reaction.svg|300px|mini|desno|Jedna od mogućih nuklearnih fisijskih lančanih reakcija: 1. Atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisioni fragmenti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 2. Jedan od tih neutrona bude uhvaćen od atoma uranija-238 i ne nastavlja reakciju. Drugi neutron napušta sustav bez da bude uhvaćen. Ipak, jedan od neutrona se sudara s novim atomom uranija-235, koji se raspada na dva nova atoma (fisioni fragmenti), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 3. Dva se neutrona sudaraju s dva atoma uranija-235 i svaki se raspada i nastavlja reakciju.]]
Produkti nuklearne fisije ili fisijski fragmenti se mogu podijeliti u dvije grupe, i to na laku grupu elemenata s atomskim brojem od 85 do 104 i tešku grupu elemenata s atomskim brojem od 130 do 149. Sporim neutronima se može izazvati nuklearna fisija uranija-235, ali ne i kod uranija-238. Nuklearna fisija uranija-235 se odvija na 30-tak načina. U vrlo kratkom vremenu od 10-12 [[sekunda]] [[atomska jezgra]] uranija-235 izbaci 2 do 3 [[neutron]]a. Ovi fisijski neutroni su brzi, ali kratkog života, manje od 10-14 sekundi. Osim '''fisijskih neutrona''', nastaju i '''zakašnjeli neutroni''', koje emitiraju fisijski fragmenti i njihovo vrijeme poluraspada je od 0,05 sekundi do 120 minuta. Iako zakašnjeli neutroni čine samo malen dio oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju [[nuklearni reaktor|nuklearnih reaktora]].<ref>[http://www.nek.si/hr/o_nuklearnoj_tehnologiji/nuklearno_gorivo/od_rude_do_zutog_kolaca/] {{Webarchive|url=https://web.archive.org/web/20170731082259/http://www.nek.si/hr/o_nuklearnoj_tehnologiji/nuklearno_gorivo/od_rude_do_zutog_kolaca/ |date=2017-07-31 }} "Od rude do žutog kolača", Nuklearna elektrana Krško, 2011.</ref>

Pomoću sporih (termičkih) neutrona ne nastaje nuklearna fisija samo kod uranija-235, već i kod uranija-233 i [[plutonij]]a-239 (nuklearno gorivo). Nuklearne fisije su ostvarene i kod atomskih jezgri drugih teških elemenata, i to ne samo djelovanjem neutrona, već i sa nekim električki nabijenim česticama kao što su proton, [[deuterij]] i alfa-čestica, pomoću [[Akcelerator čestica|akceleratora čestica]]. Nuklearna fisija može nastati i djelovanjem [[gama-čestica]], kao što su poznati primjeri [[bizmut]]a, [[Olovo (element)|olova]], [[živa|žive]], [[zlato|zlata]], [[platina|platine]] i [[tantal]]a.

===Model tekuće kapljice atomske jezgre===
Mehanizam nuklearne fisije objašnjava se '''teorijom nuklearne fisije''', koju su iznijeli [[Niels Bohr]] i J.A.Wheeler 1939. , koju su je nazvali '''model tekuće kapljice atomske jezgre'''. Oni su pretpostavili da je djelovanje [[Nuklearna sila|nuklearnih sila]] slično djelovanju privlačnih sila između [[molekula]] u kapljici [[voda|vode]], koja zauzima oblik [[Kugla|kugle]] i suprostavlja se svojoj promjeni oblika. Kad u atomsku jezgru uranija-235 uleti spori neutron, on svoju energiju preda [[nukleon]]ima u toj jezgri. Uslijed toga nastaje njihovo brže kretanje i jezgra uranija-235, koju treba promatrati kao kapljicu tekućine oblika kugle, prolazi kroz niz promjena stanja i oblika. Kapljica se najprije izdužuje u [[Kvadrike|elipsoid]] (oblik [[jaje]]ta). Ako u kapljici ne postoji dovoljna količina energije da se svlada [[sila]] napetosti površine, ona će poslije titranja zauzeti ponovno svoj [[Sfera|sferni]] oblik. Ali pri dovoljnoj količini energije, sila koja vrši promjenu oblika izazvat će udubljivanje kapljice u sredini i kapljica će dobiti oblik sličan kao [[kikiriki]]. U tom slučaju, elektrostatička odbijajuća [[Coulombov zakon|Coulombova sila]] može svladati [[Rezidualna jaka nuklearna sila|rezidualnu jaku nuklearnu silu]], pa će se kapljica rascijepiti u dva dijela, koja će biti izbačena u različitim smjerovima. Dva fisijska fragmenta će dobiti na kraju oblik kugle. Tako će nastati dva odvojena atomska jezgra različitih elemenata, koji će težiti stabilnijem stanju, pa će izbaciti jedan ili više [[neutron]]a.

Smatra se da nesimetrična priroda nuklearne fuzije nastaje zbog toga što se [[atomska jezgra]] sastoji od nekoliko slojeva. Pretpostavlja se da se simetrično cijepaju samo vanjski slojevi, a unutrašnji dio jezgre se uopće ne cijepa, nego izlijeće zajedno s jednom polovinom [[nukleon]]a iz vanjskih slojeva. Fisioni fragmenti izlijeću velikom [[brzina|brzinom]] i zagrijavaju okolinu u kojoj nastaju.

Fisioni fragmenti uranija-235 zbog velikog broja [[neutron]]a, kojih je više nego u stabilnim izotopima elemenata, su vrlo nestabilni. Svi fisioni fragmenti su elektronski aktivni i poslije niza uzastopnih [[Beta-čestica|beta-raspada]] prelaze u stabilne [[izotop]]e. To znači da svaki fisioni fragment ima svoj svojstveni radioaktivni niz. Pošto se pri emisiji beta-čestica mijenja [[atomska masa]] tog [[atom]]a, normalno je da se [[atomski broj]] takvog atoma povećava za jedan. Pri nuklearnoj fisiji uranija-235 otkriveno je preko 300 različitih aktivnih produkata fisije.

Kako pri nuklearnoj fisiji nastaje velik broj beta-čestica i gama-čestica, ova jaka [[radioaktivnost]] stvara '''zatrovanje''' (kontaminaciju), uslijed čega dolazi do oštećenja ljudskog [[Organizam|organizma]], koji su im izloženi. Zbog toga osoblje koje radi u nuklearnim reaktorima mora upotrebljavati [[Zaštita na radu|zaštitna sredstva]].

==Svojstava nuklearne fisije==

===Nuklearna energija vezanja atomske jezgre===
[[Nuklearna energija vezanja]] [[Atomska jezgra|atomske jezgre]] je [[energija]] koja drži [[nukleon]]e na okupu. Ta [[energija]] ima različite vrijednosti za različite jezgre, a raste s porastom [[Relativna atomska masa|masenog broja]]. Zbog takve razlike u energiji vezanja, neke su jezgre nestabilne i raspadaju se pretvarajući se u druge stabilnije jezgre. Učestalost raspada je povezana uz [[vrijeme poluraspada]], koje se definira kao vrijeme koje je potrebno da se raspadne polovica jezgri nekog uzorka. Vrijeme poluraspada različitih jezgri može imati vrijednosti između dijelića sekunde pa sve do nekoliko milijardi godina.

===Nuklearni udarni presjek===
[[Nuklearni udarni presjek]] je vrlo važan pojam kojim se određuje iskoristljivost neke nuklearne reakcije ili vjerovatnost da dođe do sudara između neke ulazne čestice i atomske jezgre nekog atoma. Mjerna jedinica za nuklearni udarni presjek je 1 [[barn]], a to iznosi 1 x 10<sup>-28</sup> m<sup>2</sup>. Tako je na primjer nuklearni udarni presjek za uranij-235 i spore (termičke) neutrone 700 x 10<sup>-28</sup> m<sup>2</sup> ili 700 barna.

===Nuklearna lančana reakcija===
[[Nuklearna lančana reakcija]] nastaje uslijed samoodržanja nuklearne fisije, tako da '''fisijski neutroni''', kojih je prosječno oko 2,5 po fisiji jedne jezgre, uzrokuju nove fisije. Samoodržanje nuklearne fisije može se ostvariti ako bar jedan od tih neutrona prouzroči novu fisiju u okolnim jezgrama. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na kontrolirani način u posebnim uređajima koji se zovu [[nuklearni reaktor]]i.

Temeljni princip lančane reakcije prilično je jednostavan. Atom uranija-235 apsorbira [[neutron]], koji uzrokuje njegovo cijepanje. Pri cijepanju se oslobađa energija i u prosjeku dva do tri nova neutrona, koji mogu izazvati nova cijepanja. Taj se proces naziva nuklearnom lančanom reakcijom. U nuklearnom reaktoru proces lančane reakcije kontroliramo, jer od dva do tri novonastala neutrona pri cijepanju u prosjeku samo jedan uzrokuje novo cijepanje urana 235. U reaktoru se, dakle, odvija '''kontrolirana lančana reakcija'''.

Nakon cijepanja nastaju dvije vrste neutrona: fisijski i '''zakašnjeli'''. Fisijski neutroni se oslobađaju neposredno nakon cijepanja, a zakašnjeli kasnije, i to samo nakon raspada nekih fragmenata, odnosno njihovih potomaka. Iako zakašnjeli neutroni čine samo malen dio, oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju reaktora.

Svi fragmenti i većina njihovih potomaka radioaktivni su i raspadaju se. U prosjeku su do konačnoga stabilnog izotopa potrebna tri do četiri radioaktivna raspada. Većinom je riječ o beta- i gama-raspadu, pri čemu se oslobađaju [[Beta-čestica|beta-čestice]], odnosno [[Gama-čestica|gama-zrake]]. Energija koja se oslobađa u tim raspadima naziva se '''zakašnjelom toplinom'''.

Za odvijanje lančane reakcije odlučne su dvije veličine: '''neutronski prinos''' ''k'' i '''trajanje fisijske generacije''' ''τ'' u lančanoj reakciji. Trajanjem jedne fisijske generacije naziva se prosječno vrijeme između dviju uzastopnih fisija (da bi fisijski neutroni bili emitirani iz neke jezgre i dospjeli do drugih fisibilnih jezgara potrebno je neko vrijeme). Neutronski prinos ''k'' je omjer broja neutrona nastalih u fisijskom procesa prema broju neutrona nastalih u prethodnom fisijskom procesu. Lančana je reakcija nadkritična ako je k > 1, podkritična ako je k < 1. Ako je k = 1, lančana reakcija održava se trajno s istim brojem fisija u jediničnom obujmu. Kontrolom neutronskog prinosa kontrolira se broj neutrona, koriste se štapovi od [[kadmij]]a koji se uvlače u reaktorsku jezgru i apsorbiraju neutrone.

== Fizički pregled ==

=== Mehanizam ===
[[Image:UFission.gif|300px|right|thumb|Vizuelna reprezentacija indukovanja nuklearne fuzije, pri čemu se sporo krećući neutron apsporbuje u jezgru atoma uranijuma-235, usled čega dolazi do fisije u dva lakša elementa (fisiona produkta) koji se brzo kreću i u dodatne neutrone. Najveći deo oslobođene energije je u obliku kinetičke brzine fisionih produkata i neutrona.]]
[[Image:ThermalFissionYield.svg|thumb|300px|Prinosi fisionih produkata po masi za [[termalni neutron|termalnu neutronsku]] fisiju [[Uranijum-235|U-235]], [[Pu-239]], kombinaciju koja je tipična za današnje nuklearne reaktore, i [[Uranijum-233|U-233]] koji se koristi u [[torijumski ciklus|torijumskom ciklusu]].]]

Nuklearna fisija se može odvijati bez [[neutron]]skog bombardovanja, kao tip [[radioaktivni raspad|radioaktivnog raspada]]. Ovaj tip fisije (takazvana [[spontana fisija]]) je redak, izuzev u slučaju nekoliko teških izotopa. U nuklearnim uređajima, esencijalno sva nuklearna fisija se odvija kao „[[nuklearna reakcija]]“ — proces vođen bombardovanjem koji proizilazi iz kolizije dve subatomske čestice. U nuklearnim reakcijama, subatomska čestica se sudara sa atomskim jezgrom i uzrokuje promene u njemu. Nuklearne reakcije su stoga vođene i mehanikom bombardovanja, a ne samo relativno konstantnim [[eksponencijalni raspad|eksponencijalnim raspadom]] i [[Vreme poluraspada|polu-život]]om karakterističnim za spontane radioaktivne procese.

Poznato je mnogo tipova [[nuklearna reakcija|nuklearnih reakcija]]. Nuklearna fisija se značajno razlikuje od drugih tipova nuklearnih reakcija, po tome što ona može da bude pojačana i u nekim slučajevima kontrolisana [[nuklearna lančana reakcija]] (ona je specifični tip opšte klase [[lančana reakcija|lančanih reakcija]]). U takvoj reakciji, slobodni [[neutron]]i koji su oslobođeni fisijom mogu da izazovu dodatne reakcije fisije, čime se zatim oslobađa još više neutrona i uzrokuje dalja fisija.

[[Izotopi]] [[hemijski element|hemijskih elemenata]] koji imaju sposobnost podržavanja fisione lančane reakcije se nazivaju [[nuklearno gorivo|nuklearnim gorivima]], i kaže se da su ''fisivi''. Najčešće korišćena nuklearna goriva su [[uranijum-235|<sup>235</sup>U]] (izotop [[uranijum]]a sa [[atomska masa|atomskom masom]] od 235 i [[Plutonijum-239|<sup>239</sup>Pu]] (izotop [[plutonijum]]a sa [[atomska masa|atomskom masom]] od 239). Ta goriva se raspadaju u bimodalnom opsegu hemijskih elemenata sa atomskim masama centriranim u blizini 95 i 135&nbsp;'''u''' ([[fisioni produkt]]i). Većina nuklearnih goriva samo veoma sporo podleže [[spontana fisija|spontanoj fisiji]], raspadajući se umesto toga uglavnom putem [[alfa čestica|alfa]]/[[beta čestica|beta]] [[lanac raspadanja|lanca raspadanja]] tokom dužih perioda od [[milenijum]]a do [[Eon (geologija)|eona]]. U [[nuklearni reaktor|nuklearnim reaktorima]] ili nuklernom oružju, velika većina fisionih reakcija se indukuje bombardovanjem sa drugim čisticama, neutronima, koji su oslobađeni prethodnim fisionim reakcijama.

Nuklearne fisije u nuklearnim gorivima su rezultat energije nuklearne ekscitacije proizvedene ulaskom neutrona u fisivna atomska jezgra. Ta energija, je rezultat [[nuklearna sila|nuklearne sile]] privlačenja između neutrona i nukleusa. Dovoljno je da se deformiše nukleus u oblik dvodelne tekuće kapljice, dok se ne pređe tačka u kojoj nuklearni fragmenti premašuju rastojanja na kojima nuklearna sila može da drži dve grupe naelektrisanih nukleona zajedno, i kad to toga dođe, dva fragmenta kompletiraju svoje razdvajanje i bivaju odbijene jedan od drugog usled uzajamno repulzivnih naelektrisanja, u procesu koji postaje nepovratan sa sve većim i većim rastojanjem. Sličan proces se javlja kod fisivih izotopa (kao što je uranijum-238), mada da bi došlo do fisije, tim izotopima je neophodna dodatna energija koju pružaju [[brzi neutron]]i (kao što su oni proizvedeni [[nuklearna fuzija|nuklearnom fuzijom]] u [[termonuklearno oružje|termonuklearnom oružju]]).

[[Model kapljice tečnosti]] [[Atomsko jezgro|atomskog nukleusa]] predviđa fisione produkte jednake veličine kao ishod nuklearne deformacije. Sofistikovaniji [[model nuklearne ljuske]] je neophodan da bi se mehanistički objasnio način energetički povoljnijeg ishoda, u kome je jedan fisioni produkt malo manji od drugog. Teoriju fisije baziranu na modelu ljuske je formulisala [[Maria Goeppert Mayer|Marija Majer]].

Binarna fisija je najčešći fisioni proces, i njime se proizvode gore pomenuti fisioni produkti, sa 95±15 i 135±15&nbsp;'''u'''. Međutim, do binarnog procesa dolazi uglavnom zato što je najverovatniji. U oko 2 do 4 fisije na 1000 u nuklearnom reaktoru, proces koji se naziva [[ternerna fisija]] proizvodi tri pozitivno naelektrisana fragmenta (plus neutrone) i najmanji među njima mogu da budu u opsegu od veoma malog naelektrisanja i mase kao što je proton (Z=1), do velikog fragmenta kao što je [[argon]] (Z=18). Najčešći mali fragmenti, međutim, se sastoje od oko 90% jezgara helijuma-4 sa više energije od alfa čestica iz alfa raspada (takozvane „alfe dugog opsega“ sa ~ 16 MeV), plus jezgra helijuma-6, i tritoni (jezgra [[tricijum]]a). Ternarni proces je zastupljen u manjoj meri, mada se njime ipak proizvode znatne količine gasova helijuma-4 i tricijuma u šipkama goriva modernih nuklearnih reaktora.<ref>S. Vermote, et al. (2008) [http://books.google.com/books?id=6IkykKNob6gC&pg=PA259 "Comparative study of the ternary particle emission in 243-Cm (nth,f) and 244-Cm(SF)"] in ''Dynamical aspects of nuclear fission: proceedings of the 6th International Conference.'' J. Kliman, M. G. Itkis, S. Gmuca (eds.). World Scientific Publishing Co. Pte. Ltd. Singapore.</ref>

=== Energetika ===
==== Ulaz ====
Za fisiju teških jezgara neophodan je totalni unos energije od oko 7 od 8 miliona [[elektron volt]]i (MeV) da bi inicijalno svladala [[nuklearna sila]] koja drži jezgro u sfernom ili približno sfernom obliku, i počevši od toga, da ga deformiše u oblik dvodelne kapljice („kikirikija“) u kome delovi mogu da nastave da se odvajaju jedan od drugog, potpomognuti svojim uzajamnim odbijanjem pozitivnih naelektrisanja, kao što je to slučaj u najzastupljenijem procesu binarne fisije (dva pozitivno naelektrisana fisiona produkta + neutroni). Nakon što su delovi jezgra potisnuti do kritičnog razmaka, izvan koga kratkosežna [[jaka sila]] ne može više da ih drži zajedno, proces njihove separacije se odvija posredstvom energije (dalekosežnog) [[Elektromagnetna sila|elektromagnetskog]] odbijanja između dva fragmenta. Rezultat su dva fisiona fragmenta koji se udaljavaju jedan od drugog, noseći visok sadržaj energije.

Oko 6 MeV fisione ulazne energije dolazi od jednostavnog vezivanja jednog dodatnog neutrona u teško jezgro dejstvom jake sile; mada, kod mnogih izotopa podložnih fisiji, ta količina energije nije dovoljna. Uranijum-238, na primer, ima skoro ništavnu fisionu poprečnu sekciju za neutrone sa manje od jednog MeV energije. Ako se ne unese dodatna energija putem nekog drugog mehanizma, ne dolazi do fisije jezgra, nego se samo apsorbuje neutron, kao što je to slučaj kad U-238 apsorbuje spore i čak izvesni udeo brzih neutrona, čime postaje U-239. Preostala energija neophodna za inicijaciju fisije može proizaći iz jednog od dva druga mehanizma: jedan od kojih je unos viška kinetičke energije ulaznih neutrona, koji su u sve većoj meri sposobni to izazovu fisiju podložnih teških jezgara, kad njihova kinetička energija prelazi jedan MeV (oni su takozvani [[brzi neutron]]i). Takvi visoko energetski neutroni modu da direktno izazovu rascep U-238 (oni nalaze primenu u [[termonuklearno oružje|termonuklearnom oružju]], u kome brzi neutroni proističu iz [[nuklearna fuzija|nuklearne fuzije]]). Međutim, taj proces nije podesan za široku primenu u nuklearnim reaktorima, pošto suviše mali udeo fisionih neutrona proizvodenih bilo kojim tipom fisije ima dovoljno energije da efiktivno rascepi U-238 (fisioni neutroni imaju [[Modus (statistika)|mod]] energije od 2 MeV, ali je [[medijan]] samo 0,75 MeV, što znači da pola njih ima nedovoljnu energiju).<ref>J. Byrne (2011) ''Neutrons, Nuclei, and Matter'', Dover Publications, Mineola, NY, p. 259, {{ISBN|978-0-486-48238-5}}.</ref>

Među teškim aktinoidnim elementima, izotopi koji imaju neparan broj neutrona (kao što je U-235 sa 143 neutrona) vezuju ekstra neutron sa dodatnih 1 do 2 MeV energije u odnosu na izotop istog elementa sa parnim brojem neutrona (kao što je U-238 sa 146 neutrona). Ta ekstra energija vezivanja je dostupna kao result efekta [[semi-empirijska masena formula|neutronskog uparivanja]]. Ta ekstra energija proizilazi iz [[Paulijev princip isključenja|Paulijevog principa isključivanja]] kojim se dozvoljava dodatnom neutronu da zauzme istu nuklearnu orbitalu kao i zadnji neutron u nukleusu, tako da oni formiraju par. Kod takvih izotopa, stoga nije neophodna neutronska kinetička energija, pošto se sva neophodna energija dobija apsorpcijom neutrona, bilo sporog ili brzog, pri čemu se spori neutroni koriste u nuklearnim reaktorima sa moderatorm, a brzi u [[brzi neutronski reaktor|brzim neutronskim reaktorima]], i oružju). Kao što je već napomenuto, potgrupa elemenata podložnih fisiji se mogu efektivno cepati njihovim sopstvenim fisionim neutronima (čime se potencijalno može izazvati nuklearna [[lančana reakcija]] u relativno malim količinama čistog materijala). Primeri su izotopi U-235 i plutonijum-239.

==== Izlaz ====
Tipični fisioni događaji otpuštaju oko dve stotine miliona [[Elektronvolt|eV]] (200&nbsp;MeV) energije pri svakom fisionom događaju. Izbor izotopa ima malog uticaja na količinu oslobođene energije. To se može lako uočiti pregledom krive [[energija vezivanja|energije vezivanja]]. Prosečna energija vezivanja [[aktinoid]]nih jezgara počevši od uranijuma je oko 7,6 MeV po jezgru. Idući na levo duž krive energije vezivanja, gde se [[fisioni produkt]]i grupišu, lako se može uočiti da energija vezivanja fisionih produkata teži da bude oko 8,5 MeV po nukleonu. Stoga u svakom fisionom događaju izotopa u aktinoidnom opsegu mase, oko 0,9 MeV se oslobađa po nukleonu početnog elementa. Fisija U235 sporim neutronom proizvodi skoro identičnu količinu energije sa fisijom U238 brzim neutronom. Taj profil oslobađanja energije takođe važi za torijum i razne manje aktinoide.<ref name=ENS>{{cite web |author=Marion Brünglinghaus |url=http://www.euronuclear.org/info/encyclopedia/n/nuclear-fission.htm |title=Nuclear fission |publisher=European Nuclear Society |accessdate=2013-01-04 |archivedate=2013-01-17 |archiveurl=https://web.archive.org/web/20130117002723/http://www.euronuclear.org/info/encyclopedia/n/nuclear-fission.htm |deadurl=yes }}</ref>

U kontrastu s tim, većina reakcija [[hemijska reakcija|hemijske]] [[oksidacija|oksidacije]] (kao što su sagorevanje [[ugalj|uglja]] ili [[trinitrotoluen|TNT]]) oslobađaju u najboljem slučaju nekoliko [[Elektronvolt|eV]] po događaju. Stoga, nuklearno gorivo sadrži najmanje deset miliona puta više [[Gustina energije|korisne energije po jedinici mase]] nego hemijsko gorivo. Energija nuklearne fisije se oslobađa kao [[kinetička energija]] fisionih produkata i fragmenata, i kao [[elektromagnetno zračenje|elektromagnetna radijacija]] u obliku [[gama zraci|gama zraka]]; u nuklearnom reaktoru, energija se konvertuje u [[toplota|toplotu]] pošto se čestice i gama zraci sudaraju sa atomima od kojih je napravljen reaktor i njegovim [[radni fluid|radnim fluidom]], obično [[voda|vodom]] ili u nekim slučajevima [[teška voda|teškom vodom]] ili [[istopljena so|istopljenim solima]].

Pri rascepu jezgara [[uranijum]]a u fragmente jezgra, oko 0,1 % mase uranijumskih jezgara<ref name="bulletin1950">Hans A. Bethe (April 1950), [http://books.google.com/books?id=Mg4AAAAAMBAJ&pg=PA99 "The Hydrogen Bomb"], ''Bulletin of the Atomic Scientists'', p. 99.</ref> prelazi u energiju fisije od ~200&nbsp;MeV. Za uranijum-235 (totalna prosečna fisiona energija je 202,5&nbsp;MeV), tipično se ~169&nbsp;MeV javlja kao [[kinetička energija]] rascepljenih jezgara, koja lete sa oko 3% brzine svetlosti, usled [[Kulonov zakon|Kulonovske repulzije]]. Takođe, u proseku se emituje 2,5&nbsp;neutrona, sa prosečnom kinetičkom energijom po neutronu od ~2&nbsp;MeV (totalno 4.8&nbsp;MeV).<ref>These fission neutrons have a wide energy spectrum, with range from 0 to 14 MeV, with mean of 2 MeV and [[mode (statistics)]] of 0.75 Mev. See Byrne, op. cite.</ref> Reakcija fisije takođe oslobađa ~7&nbsp;MeV u obliku [[Elektromagnetsko zračenje|fotona]] [[Gama-čestica|gama zraka]]. Iz te vrednosti proizilazi da nuklearno fisiona eksplozija ili nesrećni slučaj emituje oko 3,5% svoje energije u obliku gama zraka, što je manje od 2,5% energije brzih neutrona (totalna vrednost oba tipa radijacije je ~ 6%), a ostatak je kinetička energija fisionih fragmenata (ona se pojavljuje skoro odmah nakon što fragmenti dođu u susret sa okružnom materijom, kao jednostavna [[toplota]]). U atomskoj bombi, ta toplota može da služi za povišenje temperature jezgra bombe do 100&nbsp;miliona [[kelvin]]a i da uzrokuje sekundarnu emisiju X-zraka, koji konvertuju deo te energije u jonizacionu radijaciju. Međutim, u nuklearnim reaktorima, kinetička energija fisionih fragmenata se zadržava kao toplota niske temperature, koja uzrokuje malo jonizacije, ili je nema.

Takozvane [[neutronska bomba|neutronske bombe]] (poboljšana radijaciona oružja) su konstruisana tako da oslobađaju veći udeo svoje energije kao jonizujuće zračenje (specifično neutrone), mada su sve one termonuklearni uređaji koji se oslanjaju na stupanj nuklearne fuzije za proizvodnju dodatne radijacije. Energijska dinamika čiste fisione bombe se uvek zadržava na oko 6% prinosa u obliku radijacije, kao direktni rezultat fisije.

Totalna energija ''brze fisije'' doseže oko 181 MeV, ili ~ 89% totalne energije koja se konačno oslobađa fisijom tokom vremena. Preostalih ~ 11% se oslobađa u obliku beta raspada koji ima vazne polu-živote, ali odmah počine kao proces u fisionim produktima; i u obliku odloženih gama emisija vezanih za te beta raspade. Na primer, u uranijumu-235 ta odložena energija je podeljena u oko 6,5&nbsp;MeV u betama, 8,8&nbsp;MeV u [[neutrino|antineutrinima]] (oslobođenim u isto vreme kao i bete), i konačno, dodatnih 6,3&nbsp;MeV u odloženim gama emisijama iz pobuđenih produkata beta-raspada (za prosečnu totalnu emisiju od ~10 gama zraka po fisiji). Stoga, oko 6,5% totalne energije fisije se oslobađa nakon događaja, kao odložena jonizujuća radijacija, i odložena jonizujuća energija je ravnomerno podeljena između gama i beta zraka.

U reaktoru koji je radio izvesno vreme, radioaktivni fisioni produkti se nakupljaju do koncentracija stabilnog stanja, tako da je njihova brzina raspadanja jednaka njihovoj brzini formiranja, tako da je njihov frakcioni totalni doprinos toploti reaktora (putem beta raspada) jednak doprinosu radioizotopske frakcije. Pod tim uslovima, 6,5% fisije se javlja kao odložena jonizaciona radijacija (odložene game i bete iz radioaktivnih fisionih produkata) koja doprinosi stabilnom stanju reaktorske toplotne produkcije. Ta frakcija zaostaje kad se reaktor naglo zatvori (pri hitnom isključivanju). Iz tog razloga, reaktorski izlaz [[toplota raspada|toplote raspada]] počinje sa oko 6,5% pune fisione snage reaktoriskog stabilnog stanja, nakon zaustavljanja reaktora. Međutim, u toku nekoliko sati, usled raspada tih izotopa, izlazna snaga raspada je daleko manja.

Ostatak energije raspada (8,8 MeV/202,5 MeV&nbsp;= 4,3% totalne fisione energije) se emituje kao antineutrini, koji se kao praktična materija, ne smatraju „jonizacionom radijacijom“. Energija oslobođena u obliku antineutrina se ne zadržava materijalom reaktora kao toplota, nego direktno prolazi kroz sve materijale (uključujući Zemlju) brzinom koja je blizo brzine svetlosti, i odlazi u interplanetarni prostor (apsorbovana količina je zanemarljiva). Neutrinska radijacija se obično ne klasifikuje kao jonizaciona radijacija, pošto se skoro u potpunosti ne apsorbuje i stoga ne proizvodi efekte (mada su veoma retki neutrinski događaji jonizujući). Skoro celokupan ostatak radijacije (6,5% odložene beta i gama radijacije) se konačno konvertuje u toplotu u jezgru reaktora ili njegovom zaštitnom omotaču.

Neki procesi u kojima učestuvuju neutroni su primetni po apsorbovanju ili konačnom prinosu energije — na primer neutronska kinetička energija ne daje odmah toplotu ako je neutron zarobljen atomom uranijuma-238, čime se stvara plutonijum-239, ali se ta energija emituje ako kasnije dođe do fisije plutonijuma-239. Sa druge strane, takozvani [[odroloženi neutron]]i emitovani kao radioaktivni produkti raspada sa polu-životima do nekoliko minuta, iz produkata fisije, su veoma važni za [[fizika nuklearnig reaktora|kontrolu reaktora]], zato što oni daju karakteristično „reakciono“ vreme za udvostručavanje veličine totalne nuklearne reakcije, ako se reakcija odvija u „odloženoj kritičnoj“ zoni koja se namerno oslanja na te neutrone za superkritičnu lančanu reakciju (u kojoj svaki fisioni ciklus proizvodi više neutrona nego što ih apsorbuje). Bez njihovog postojanja, nuklearna lančana reakcija bi bila [[brza kritičnost|brzo kritična]] i povećala bi se brže nego što be se mogla kontrolisati ljudskom intervencijom. U tom slučaju, prvi eksperimentalni atomski reaktori bi otišli izvan kontrole u opasne i zbrkane „brze kritične reakcije“ pre nego što bi njihovi operatori mogli da ih ručno zaustave (iz tog razloga, dezajner [[Enrico Fermi|Enriko Fermi]] je uveo radijacijom kontra pobuđene kontrolne šipke, suspendovane elektromagnetima, koje mogu da automatski padnu u centar [[Čikago gomila-1|Čikago gomile-1]]). Ako su ti odloženi neutroni uzvaćeni bez izazivanja fisije, oni takođe proizvode toplotu.<ref>{{cite web|url=http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_7/4_7_1.html |title=Nuclear Fission and Fusion, and Nuclear Interactions|publisher=National Physical Laboratory|accessdate=2013-01-04}}</ref>

==Reference==
{{reference|2}}

== Literatura ==
{{refbegin|2}}
* {{cite book | title = DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 1 | date = January 1993 | publisher = U.S. Department of Energy | url = http://energy.gov/sites/prod/files/2013/06/f2/h1019v1.pdf | accessdate = 2012-01-03 | archivedate = 2014-03-19 | archiveurl = https://web.archive.org/web/20140319145623/http://energy.gov/sites/prod/files/2013/06/f2/h1019v1.pdf | deadurl = yes }}
* {{cite book| title = DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 2| date = January 1993| publisher = U.S. Department of Energy| url = http://energy.gov/sites/prod/files/2013/06/f2/h1019v2.pdf| accessdate = 2012-01-03| archivedate = 2013-12-03| archiveurl = https://web.archive.org/web/20131203041437/http://energy.gov/sites/prod/files/2013/06/f2/h1019v2.pdf| deadurl = yes}}
* G. H. Golub, J. M. Ortega: ''Wissenschaftliches Rechnen und Differentialgleichungen. Eine Einführung in die Numerische Mathematik''. Heldermann Verlag, Lemgo 1995, {{ISBN|3-88538-106-0}}.
* G. Oberholz: ''Differentialgleichungen für technische Berufe – vierte Auflage''. Verlag Anita Oberholz, Gelsenkirchen 1995, {{ISBN|3-9801902-4-2}}.
* P.J. Olver ''Equivalence, Invariants and Symmetry'' Cambridge Press 1995.
* L. Papula: ''Mathematik für Ingenieure und Naturwissenschaftler Band 2''. Viewegs Fachbücher der Technik, Wiesbaden 2001, {{ISBN|3-528-94237-1}}.
* H. Stephani ''Differential Equations: Their Solution Using Symmetries.'' Edited by M. MacCallum, Cambridge University Press 1989.
* Benker, H.: "Differentialgleichungen mit MATHCAD und MATLAB", Springer-Verlag Berlin, Heidelberg, New York 2005.
* {{cite book
|author =Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А.
|title = Основы теории и методы расчета ядерных энергетических реакторов
|location = M
|publisher = Энергоатомиздат
|year = 1982
|ref = Бать и др.
}}
* {{cite book
|author =Камерон И.
|title =Ядерные реакторы
|location = M
|publisher =Энергоатомиздат
|year =1987
|ref = Камерон
}}
* {{cite book
|author =Климов А.Н.
|title = Ядерная физика и ядерные реакторы
|location = M
|publisher = Энергоатомиздат
|year = 1985
|ref = Климов
}}
* {{cite book
|author = К. Н. Мухин
|title = Экспериментальная ядерная физика
|publisher = 5-е изд
|location = М
|publisher = Энергоатомиздат
|year = 1993
|volume = 1. Физика атомного ядра. Ч. I. Свойства нуклонов, ядер и радиоактивных излучений
|isbn = 5-283-04080-1
|ref = Мухин, т.1 ч.I
}}
* {{cite book
|author = К. Н. Мухин
|title = Экспериментальная ядерная физика
|publisher = 5-е изд
|location = M
|publisher = Энергоатомиздат
|year = 1993
|volume = 1. Физика атомного ядра. Ч. II. Ядерные взаимодействия
|isbn = 5-283-04081-X
|ref = Мухин, т.1 ч.II
}}
* {{cite book
|author = Cyriel Wagemans
|title = The Nuclear Fission Process
|url = https://archive.org/details/nuclearfissionpr0000unse
|edition = 1-е изд
|publisher = CRC Press
|year = 1991
|allpages = 608
|isbn = 978-0849354342
|ref = Wagemans
}}
* {{cite journal
|author = Niels Bohr, John Archibald Wheeler
|title = The Mechanism of Nuclear Fission
|url = http://link.aps.org/doi/10.1103/PhysRev.56.426
|journal = Physical Review
|year = 1939
|volume = 56
|issue = 5
|pages = 426—450
|ref = Bohr, Wheeler
}}
* {{cite journal
|author = S. Bjørnholm, J. E. Lynn
|title = The double-humped fission barrier
|url = http://link.aps.org/doi/10.1103/RevModPhys.52.725
|publisher = Reviews of Modern Physics
|year = 1980
|volume = 52
|issue = 4
|pages = 725−931
|ref = Bjørnholm, Lynn
}}
* {{cite journal
|author = Balraj Singh, Roy Zywina and Richard B. Firestone
|title = Table of Superdeformed Nuclear Bands and Fission Isomers: Third Edition (October 2002)
|url = http://dx.doi.org/10.1006/ndsh.2002.0018
|publisher = Nuclear Data Sheets]
|year = 2002
|volume = 97
|issue = 2
|pages = 241—592
|ref = Singh et al.
}} ([http://www.physics.mcmaster.ca/~balraj/sdbook/ свободный препринт] {{Webarchive|url=https://web.archive.org/web/20160304064112/http://www.physics.mcmaster.ca/~balraj/sdbook/ |date=2016-03-04 }})
* {{cite journal
|author = André Michaudon
|title = From Alchemy to Atoms. The making of plutonium
|url = http://www.fas.org/sgp/othergov/doe/lanl/pubs/00818012.pdf
|language = en
|publisher = Los Alamos Science
|year = 2000
|issue = 26
|pages = 62—73
}}
{{refend}}

== Vanjske veze ==
{{Commonscat|Nuclear fission}}
* [http://www.aip.org/history/mod/fission/fission1/01.html The Discovery of Nuclear Fission] {{Webarchive|url=https://web.archive.org/web/20100216210730/http://www.aip.org/history/mod/fission/fission1/01.html |date=2010-02-16 }}
* [http://www.atomicarchive.com/Fission/Fission1.shtml atomicarchive.com] Nuclear Fission Explained
* [http://www.nuclearfiles.org/menu/key-issues/nuclear-weapons/basics/what-is-fission.htm Nuclear Files.org] {{Webarchive|url=https://web.archive.org/web/20180308190609/http://www.nuclearfiles.org/menu/key-issues/nuclear-weapons/basics/what-is-fission.htm |date=2018-03-08 }} What is Nuclear Fission?
* [http://www.atomicarchive.com/Movies/Movie4.shtml Nuclear Fission Animation]

{{Historija fizike}}
{{Nuklearna tehnologija}}


[[Kategorija:Nuklearna fizika]]
[[af:Kernsplyting]]
[[Kategorija:Fundamentalni koncepti fizike]]
[[an:Fisión nucleyar]]
[[Kategorija:Radioaktivnost]]
[[ar:انشطار نووي]]
[[az:Nüvə parçalanması]]
[[bg:Ядрено делене]]
[[bs:Nuklearna fisija]]
[[ca:Fissió nuclear]]
[[cs:Jaderná reakce]]
[[cy:Ymholltiad niwclear]]
[[da:Fission]]
[[de:Kernspaltung]]
[[el:Πυρηνική σχάση]]
[[en:Nuclear fission]]
[[eo:Fisio]]
[[es:Fisión nuclear]]
[[et:Tuumalõhustumine]]
[[eu:Fisio nuklear]]
[[fa:شکافت هسته‌ای]]
[[fi:Fissio]]
[[fr:Fission nucléaire]]
[[gl:Fisión nuclear]]
[[he:ביקוע גרעיני]]
[[hi:विखण्डन]]
[[hr:Nuklearna fisija]]
[[hu:Maghasadás]]
[[id:Fisi nuklir]]
[[is:Kjarnaklofnun]]
[[it:Fissione nucleare]]
[[ja:核分裂反応]]
[[kn:ಪರಮಾಣು ವಿದಳನ ಕ್ರಿಯೆ]]
[[ko:핵분열]]
[[lt:Branduolio dalijimasis]]
[[ml:അണുവിഘടനം]]
[[nl:Kernsplijting]]
[[nn:Fisjon]]
[[no:Kjernefysisk fisjon]]
[[pl:Rozszczepienie jądra atomowego]]
[[pt:Fissão nuclear]]
[[qu:Iñuku huk'i p'akiy]]
[[ro:Fisiune]]
[[ru:Деление ядра]]
[[scn:Fissioni nucliari]]
[[simple:Nuclear fission]]
[[sk:Jadrová reakcia]]
[[sl:Jedrska cepitev]]
[[sq:Fisioni bërthamor]]
[[sr:Nuklearna fisija]]
[[su:Fisi nuklir]]
[[sv:Fission]]
[[ta:அணுக்கரு பிளவு]]
[[th:การแบ่งแยกนิวเคลียส]]
[[tr:Fisyon]]
[[uk:Поділ ядра]]
[[ur:نویاتی انشقاق]]
[[vi:Phản ứng phân hạch hạt nhân]]
[[war:Fisyon nukleyar]]
[[zh:核裂变]]

Aktualna verzija od 22. jula 2024. u 09:46

Jedna od mogućih reakcija nuklearne fisije: atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisijski produkti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV).
Model tekuće kapljice atomske jezgre

Nuklearna fisija (lat. fissio, razdvajanje, dijeljenje) je ona vrsta nuklearne reakcije, koja nastaje kad se jezgra atoma nekog kemijskog elementa cijepa na dva fisijska produkta ili fisiona fragmenta sličnih masa, uz emisiju jednog ili više neutrona, te velike količine energije. Tijekom procesa fisije dolazi do oslobađanja energije, jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Spontana fisija jezgre događa se vrlo sporo, no kod nekih teških jezgri moguće je inicirati bržu reakciju fisije djelovanjem sporih neutrona s tom jezgrom. Takve jezgre koje su podložne fisiji sporim neutronima nazivamo fisilnim jezgrama. Osim jezgara izotopa uranija-233 i uranija-235, te plutonija-239, fisibilna je i jezgra izotopa plutonija-241. Jedini fisilni izotop koji postoji u prirodi je izotop uranija-235. Energija oslobođena fisijom uranija-235 iznosi približno 200 MeV. Dvije lakše jezgre koje nastaju fisijom radioaktivne su i zovu se fisijski fragmenti ili fisijski produkti.

Da bi se nuklearna fisija mogla koristiti kao energetski izvor potrebno je stvoriti uvjete u kojima će se ta reakcija događati kontinuirano. Kontinuiranu fisijsku reakciju moguće je ostvariti jer se fisijom fisibilnih izotopa stvaraju dva do tri neutrona koji mogu izazvati fisiju u drugim jezgrama fisibilnih izotopa. Takva se reakcija naziva fisijska nuklearna lančana reakcija. Mase fisijskih produkata se najčešće odnose u omjeru 3:2, a vjerovatnost da dođe do nuklearne fisije je 2 do 4 puta na 1000 događaja.[1][2]

Nuklearna se fisija u nekih teških jezgara odvija spontano, kao oblik radioaktivnog raspada, tako da se teška jezgra cijepa na dva dijela, tj. X → A + B. Vjerojatnost događanja spontane fisije je vrlo mala. Dovođenjem jezgre u pobuđeno stanje vjerojatnost se fisije znatno povećava. To je stanje najlakše postići u neparnih jezgara uranija-235, uranija-233 i plutonija-239, gdje apsorpcija i sasvim sporog neutrona dovodi jezgru u pobuđenje dovoljno za fisiju.

Jezgre koje su nastale fisijama zovu se fisijski fragmenti ili fisijski produkti. Fisijski produkti su radioaktivni i glavni su izvor radioaktivnosti u istrošenom nuklearnom gorivu. Procesom fisije dolazi do oslobađanja energije jer je manje energije potrebno za formiranje dvije lakše jezgre nego jedne teže jezgre. Energija oslobođena fisijom jezgre izotopa uranija-235 iznosi približno 200 MeV i prenosi se na okolni medij u obliku toplinske energije.

Energija dobivena fisijom jednog kilograma izotopa uranija-235 jednaka je energiji koja bi se dobila izgaranjem 1 300 tona ugljena ili 1 350 tona nafte. Da bi se taj veliki energijski potencijal fisije mogao iskoristiti kao energetski izvor potrebno je omogućiti kontinuirano odvijanje fisijske reakcije. Dva do tri neutrona koji se oslobađaju tijekom fisijske reakcije mogu izazvati reakciju fisije na drugim jezgrama fisibilnog izotopa i na taj način nastaviti nuklearnu lančanu reakciju fisije. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na kontrolirani način u posebnim uređajima koji se zovu nuklearni reaktori.[3]

Povijest

[uredi | uredi kod]

Godine 1919. Ernest Rutherford je, bombardirajući dušik alfa-česticama izveo prvu nuklearnu pretvorbu (transmutaciju) jednog kemijskog elementa u drugi. Pri procesu je nastao kisik, tako je izvršena prva nuklearna reakcija: dušik-14 + α (alfa-čestica) → kisik-17 + p (proton). 1932. Rutherfordove kolege John Cockcroft i Ernest Walton su bombardirali atom litija-7 s protonima, koji se raspao na dvije alfa-čestice. Taj pokus je nazvan cijepanje atoma.

Nakon što je James Chadwick otkrio neutron 1932., talijanski fizičar Enrico Fermi 1934. ozračuje uranij sporim neutronima i zapazio je da se kao proizvod javlja nekoliko novih atoma, koji se razlikuju po vremenu poluraspada. Fermi je smatrao da je bombardiranje uranija-235 sporim neutronima izazvalo nuklearnu reakciju, pri kojoj su nastali novi radioaktivni elementi, s atomskim brojem iznad 92, nestabilni kemijski elementi s rednim brojem 93, 94 i većim brojevima, koji se nazivaju transuranijski elementi.

Uranij-235

[uredi | uredi kod]

Uranij je u to vrijeme bio posljednji kemijski element u periodnom sustavu elemenata. Na osnovu pouzdanih rezultata koji su dobiveni pomoću kemijskog razdvajanja i proučavanja beta-čestica, utvrđeno je da produkti nuklearne pretvorbe uranija-235 sa sporim neutronima, nisu transuranijski elementi, već elementi iz sredine periodnog sustava. Otto Hahn i Fritz Strassmann su 1938. otkrili da je jedan od produkata barij. Marie Curie je u svojim pokusima 1939. dobila lantan. Ni jedna grupa znanstvenika nije dobila transuranijske elemente, a kasnije su Otto Hahn i Fritz Strassmann dobili itrij, stroncij, kripton, ksenon i druge elemente iz sredine perodnog sustava.

Ovu zagonetku s nuklearnom reakcijom uranija-235 pravilno je riješila Lise Meitner i njen nećak Otto Robert Frisch. Oni su 1939. pretpostavili da se uranij-235 hvatanjem sporog neutrona cijepa na dva fisijska fragmenta, jedan je atom barija, a drugi atom kriptona. Ovu nuklearnu reakciju pri kojoj se uranija-235 cijepa na dva približno jednaka fisijska fragmenta su nazvali nuklearna fisija. Oni su ukazali da su fragmenti nuklearne fisije vrlo nestabilni i da zbog odnosa neutrona i protona u njima, nastaje čitav niz beta-raspada. Utvrđeno je da se atomske mase fisijskih fragmenata nalaze u području s atomskom masom od 70 do 160, i da nuklearna fisija nije simetrična, pa se mase fisijskih fragmenata odnose u omjeru 2:3.

Krivulja prosječne energije vezanja po nukleonu
Nuklearni udarni presjek uranija-235 u ovisnosti od brzine ili energije (temperature) neutrona
Jedna od mogućih nuklearnih fisijskih lančanih reakcija: 1. Atom uranija-235 hvata spori neutron i raspada se na dva nova atoma (fisioni fragmenti – barij-141 i kripton-92), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 2. Jedan od tih neutrona bude uhvaćen od atoma uranija-238 i ne nastavlja reakciju. Drugi neutron napušta sustav bez da bude uhvaćen. Ipak, jedan od neutrona se sudara s novim atomom uranija-235, koji se raspada na dva nova atoma (fisioni fragmenti), oslobađajući 3 nova neutrona i ogromnu količinu energije vezanja (200 MeV). 3. Dva se neutrona sudaraju s dva atoma uranija-235 i svaki se raspada i nastavlja reakciju.

Produkti nuklearne fisije ili fisijski fragmenti se mogu podijeliti u dvije grupe, i to na laku grupu elemenata s atomskim brojem od 85 do 104 i tešku grupu elemenata s atomskim brojem od 130 do 149. Sporim neutronima se može izazvati nuklearna fisija uranija-235, ali ne i kod uranija-238. Nuklearna fisija uranija-235 se odvija na 30-tak načina. U vrlo kratkom vremenu od 10-12 sekunda atomska jezgra uranija-235 izbaci 2 do 3 neutrona. Ovi fisijski neutroni su brzi, ali kratkog života, manje od 10-14 sekundi. Osim fisijskih neutrona, nastaju i zakašnjeli neutroni, koje emitiraju fisijski fragmenti i njihovo vrijeme poluraspada je od 0,05 sekundi do 120 minuta. Iako zakašnjeli neutroni čine samo malen dio oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju nuklearnih reaktora.[4]

Pomoću sporih (termičkih) neutrona ne nastaje nuklearna fisija samo kod uranija-235, već i kod uranija-233 i plutonija-239 (nuklearno gorivo). Nuklearne fisije su ostvarene i kod atomskih jezgri drugih teških elemenata, i to ne samo djelovanjem neutrona, već i sa nekim električki nabijenim česticama kao što su proton, deuterij i alfa-čestica, pomoću akceleratora čestica. Nuklearna fisija može nastati i djelovanjem gama-čestica, kao što su poznati primjeri bizmuta, olova, žive, zlata, platine i tantala.

Model tekuće kapljice atomske jezgre

[uredi | uredi kod]

Mehanizam nuklearne fisije objašnjava se teorijom nuklearne fisije, koju su iznijeli Niels Bohr i J.A.Wheeler 1939. , koju su je nazvali model tekuće kapljice atomske jezgre. Oni su pretpostavili da je djelovanje nuklearnih sila slično djelovanju privlačnih sila između molekula u kapljici vode, koja zauzima oblik kugle i suprostavlja se svojoj promjeni oblika. Kad u atomsku jezgru uranija-235 uleti spori neutron, on svoju energiju preda nukleonima u toj jezgri. Uslijed toga nastaje njihovo brže kretanje i jezgra uranija-235, koju treba promatrati kao kapljicu tekućine oblika kugle, prolazi kroz niz promjena stanja i oblika. Kapljica se najprije izdužuje u elipsoid (oblik jajeta). Ako u kapljici ne postoji dovoljna količina energije da se svlada sila napetosti površine, ona će poslije titranja zauzeti ponovno svoj sferni oblik. Ali pri dovoljnoj količini energije, sila koja vrši promjenu oblika izazvat će udubljivanje kapljice u sredini i kapljica će dobiti oblik sličan kao kikiriki. U tom slučaju, elektrostatička odbijajuća Coulombova sila može svladati rezidualnu jaku nuklearnu silu, pa će se kapljica rascijepiti u dva dijela, koja će biti izbačena u različitim smjerovima. Dva fisijska fragmenta će dobiti na kraju oblik kugle. Tako će nastati dva odvojena atomska jezgra različitih elemenata, koji će težiti stabilnijem stanju, pa će izbaciti jedan ili više neutrona.

Smatra se da nesimetrična priroda nuklearne fuzije nastaje zbog toga što se atomska jezgra sastoji od nekoliko slojeva. Pretpostavlja se da se simetrično cijepaju samo vanjski slojevi, a unutrašnji dio jezgre se uopće ne cijepa, nego izlijeće zajedno s jednom polovinom nukleona iz vanjskih slojeva. Fisioni fragmenti izlijeću velikom brzinom i zagrijavaju okolinu u kojoj nastaju.

Fisioni fragmenti uranija-235 zbog velikog broja neutrona, kojih je više nego u stabilnim izotopima elemenata, su vrlo nestabilni. Svi fisioni fragmenti su elektronski aktivni i poslije niza uzastopnih beta-raspada prelaze u stabilne izotope. To znači da svaki fisioni fragment ima svoj svojstveni radioaktivni niz. Pošto se pri emisiji beta-čestica mijenja atomska masa tog atoma, normalno je da se atomski broj takvog atoma povećava za jedan. Pri nuklearnoj fisiji uranija-235 otkriveno je preko 300 različitih aktivnih produkata fisije.

Kako pri nuklearnoj fisiji nastaje velik broj beta-čestica i gama-čestica, ova jaka radioaktivnost stvara zatrovanje (kontaminaciju), uslijed čega dolazi do oštećenja ljudskog organizma, koji su im izloženi. Zbog toga osoblje koje radi u nuklearnim reaktorima mora upotrebljavati zaštitna sredstva.

Svojstava nuklearne fisije

[uredi | uredi kod]

Nuklearna energija vezanja atomske jezgre

[uredi | uredi kod]

Nuklearna energija vezanja atomske jezgre je energija koja drži nukleone na okupu. Ta energija ima različite vrijednosti za različite jezgre, a raste s porastom masenog broja. Zbog takve razlike u energiji vezanja, neke su jezgre nestabilne i raspadaju se pretvarajući se u druge stabilnije jezgre. Učestalost raspada je povezana uz vrijeme poluraspada, koje se definira kao vrijeme koje je potrebno da se raspadne polovica jezgri nekog uzorka. Vrijeme poluraspada različitih jezgri može imati vrijednosti između dijelića sekunde pa sve do nekoliko milijardi godina.

Nuklearni udarni presjek

[uredi | uredi kod]

Nuklearni udarni presjek je vrlo važan pojam kojim se određuje iskoristljivost neke nuklearne reakcije ili vjerovatnost da dođe do sudara između neke ulazne čestice i atomske jezgre nekog atoma. Mjerna jedinica za nuklearni udarni presjek je 1 barn, a to iznosi 1 x 10-28 m2. Tako je na primjer nuklearni udarni presjek za uranij-235 i spore (termičke) neutrone 700 x 10-28 m2 ili 700 barna.

Nuklearna lančana reakcija

[uredi | uredi kod]

Nuklearna lančana reakcija nastaje uslijed samoodržanja nuklearne fisije, tako da fisijski neutroni, kojih je prosječno oko 2,5 po fisiji jedne jezgre, uzrokuju nove fisije. Samoodržanje nuklearne fisije može se ostvariti ako bar jedan od tih neutrona prouzroči novu fisiju u okolnim jezgrama. Tim procesom dolazi do kontinuiranog oslobađanja fisijske energije na kontrolirani način u posebnim uređajima koji se zovu nuklearni reaktori.

Temeljni princip lančane reakcije prilično je jednostavan. Atom uranija-235 apsorbira neutron, koji uzrokuje njegovo cijepanje. Pri cijepanju se oslobađa energija i u prosjeku dva do tri nova neutrona, koji mogu izazvati nova cijepanja. Taj se proces naziva nuklearnom lančanom reakcijom. U nuklearnom reaktoru proces lančane reakcije kontroliramo, jer od dva do tri novonastala neutrona pri cijepanju u prosjeku samo jedan uzrokuje novo cijepanje urana 235. U reaktoru se, dakle, odvija kontrolirana lančana reakcija.

Nakon cijepanja nastaju dvije vrste neutrona: fisijski i zakašnjeli. Fisijski neutroni se oslobađaju neposredno nakon cijepanja, a zakašnjeli kasnije, i to samo nakon raspada nekih fragmenata, odnosno njihovih potomaka. Iako zakašnjeli neutroni čine samo malen dio, oko 0,65% svih oslobođenih neutrona, imaju presudnu ulogu za regulaciju reaktora.

Svi fragmenti i većina njihovih potomaka radioaktivni su i raspadaju se. U prosjeku su do konačnoga stabilnog izotopa potrebna tri do četiri radioaktivna raspada. Većinom je riječ o beta- i gama-raspadu, pri čemu se oslobađaju beta-čestice, odnosno gama-zrake. Energija koja se oslobađa u tim raspadima naziva se zakašnjelom toplinom.

Za odvijanje lančane reakcije odlučne su dvije veličine: neutronski prinos k i trajanje fisijske generacije τ u lančanoj reakciji. Trajanjem jedne fisijske generacije naziva se prosječno vrijeme između dviju uzastopnih fisija (da bi fisijski neutroni bili emitirani iz neke jezgre i dospjeli do drugih fisibilnih jezgara potrebno je neko vrijeme). Neutronski prinos k je omjer broja neutrona nastalih u fisijskom procesa prema broju neutrona nastalih u prethodnom fisijskom procesu. Lančana je reakcija nadkritična ako je k > 1, podkritična ako je k < 1. Ako je k = 1, lančana reakcija održava se trajno s istim brojem fisija u jediničnom obujmu. Kontrolom neutronskog prinosa kontrolira se broj neutrona, koriste se štapovi od kadmija koji se uvlače u reaktorsku jezgru i apsorbiraju neutrone.

Fizički pregled

[uredi | uredi kod]

Mehanizam

[uredi | uredi kod]
Vizuelna reprezentacija indukovanja nuklearne fuzije, pri čemu se sporo krećući neutron apsporbuje u jezgru atoma uranijuma-235, usled čega dolazi do fisije u dva lakša elementa (fisiona produkta) koji se brzo kreću i u dodatne neutrone. Najveći deo oslobođene energije je u obliku kinetičke brzine fisionih produkata i neutrona.
Prinosi fisionih produkata po masi za termalnu neutronsku fisiju U-235, Pu-239, kombinaciju koja je tipična za današnje nuklearne reaktore, i U-233 koji se koristi u torijumskom ciklusu.

Nuklearna fisija se može odvijati bez neutronskog bombardovanja, kao tip radioaktivnog raspada. Ovaj tip fisije (takazvana spontana fisija) je redak, izuzev u slučaju nekoliko teških izotopa. U nuklearnim uređajima, esencijalno sva nuklearna fisija se odvija kao „nuklearna reakcija“ — proces vođen bombardovanjem koji proizilazi iz kolizije dve subatomske čestice. U nuklearnim reakcijama, subatomska čestica se sudara sa atomskim jezgrom i uzrokuje promene u njemu. Nuklearne reakcije su stoga vođene i mehanikom bombardovanja, a ne samo relativno konstantnim eksponencijalnim raspadom i polu-životom karakterističnim za spontane radioaktivne procese.

Poznato je mnogo tipova nuklearnih reakcija. Nuklearna fisija se značajno razlikuje od drugih tipova nuklearnih reakcija, po tome što ona može da bude pojačana i u nekim slučajevima kontrolisana nuklearna lančana reakcija (ona je specifični tip opšte klase lančanih reakcija). U takvoj reakciji, slobodni neutroni koji su oslobođeni fisijom mogu da izazovu dodatne reakcije fisije, čime se zatim oslobađa još više neutrona i uzrokuje dalja fisija.

Izotopi hemijskih elemenata koji imaju sposobnost podržavanja fisione lančane reakcije se nazivaju nuklearnim gorivima, i kaže se da su fisivi. Najčešće korišćena nuklearna goriva su 235U (izotop uranijuma sa atomskom masom od 235 i 239Pu (izotop plutonijuma sa atomskom masom od 239). Ta goriva se raspadaju u bimodalnom opsegu hemijskih elemenata sa atomskim masama centriranim u blizini 95 i 135 u (fisioni produkti). Većina nuklearnih goriva samo veoma sporo podleže spontanoj fisiji, raspadajući se umesto toga uglavnom putem alfa/beta lanca raspadanja tokom dužih perioda od milenijuma do eona. U nuklearnim reaktorima ili nuklernom oružju, velika većina fisionih reakcija se indukuje bombardovanjem sa drugim čisticama, neutronima, koji su oslobađeni prethodnim fisionim reakcijama.

Nuklearne fisije u nuklearnim gorivima su rezultat energije nuklearne ekscitacije proizvedene ulaskom neutrona u fisivna atomska jezgra. Ta energija, je rezultat nuklearne sile privlačenja između neutrona i nukleusa. Dovoljno je da se deformiše nukleus u oblik dvodelne tekuće kapljice, dok se ne pređe tačka u kojoj nuklearni fragmenti premašuju rastojanja na kojima nuklearna sila može da drži dve grupe naelektrisanih nukleona zajedno, i kad to toga dođe, dva fragmenta kompletiraju svoje razdvajanje i bivaju odbijene jedan od drugog usled uzajamno repulzivnih naelektrisanja, u procesu koji postaje nepovratan sa sve većim i većim rastojanjem. Sličan proces se javlja kod fisivih izotopa (kao što je uranijum-238), mada da bi došlo do fisije, tim izotopima je neophodna dodatna energija koju pružaju brzi neutroni (kao što su oni proizvedeni nuklearnom fuzijom u termonuklearnom oružju).

Model kapljice tečnosti atomskog nukleusa predviđa fisione produkte jednake veličine kao ishod nuklearne deformacije. Sofistikovaniji model nuklearne ljuske je neophodan da bi se mehanistički objasnio način energetički povoljnijeg ishoda, u kome je jedan fisioni produkt malo manji od drugog. Teoriju fisije baziranu na modelu ljuske je formulisala Marija Majer.

Binarna fisija je najčešći fisioni proces, i njime se proizvode gore pomenuti fisioni produkti, sa 95±15 i 135±15 u. Međutim, do binarnog procesa dolazi uglavnom zato što je najverovatniji. U oko 2 do 4 fisije na 1000 u nuklearnom reaktoru, proces koji se naziva ternerna fisija proizvodi tri pozitivno naelektrisana fragmenta (plus neutrone) i najmanji među njima mogu da budu u opsegu od veoma malog naelektrisanja i mase kao što je proton (Z=1), do velikog fragmenta kao što je argon (Z=18). Najčešći mali fragmenti, međutim, se sastoje od oko 90% jezgara helijuma-4 sa više energije od alfa čestica iz alfa raspada (takozvane „alfe dugog opsega“ sa ~ 16 MeV), plus jezgra helijuma-6, i tritoni (jezgra tricijuma). Ternarni proces je zastupljen u manjoj meri, mada se njime ipak proizvode znatne količine gasova helijuma-4 i tricijuma u šipkama goriva modernih nuklearnih reaktora.[5]

Energetika

[uredi | uredi kod]

Za fisiju teških jezgara neophodan je totalni unos energije od oko 7 od 8 miliona elektron volti (MeV) da bi inicijalno svladala nuklearna sila koja drži jezgro u sfernom ili približno sfernom obliku, i počevši od toga, da ga deformiše u oblik dvodelne kapljice („kikirikija“) u kome delovi mogu da nastave da se odvajaju jedan od drugog, potpomognuti svojim uzajamnim odbijanjem pozitivnih naelektrisanja, kao što je to slučaj u najzastupljenijem procesu binarne fisije (dva pozitivno naelektrisana fisiona produkta + neutroni). Nakon što su delovi jezgra potisnuti do kritičnog razmaka, izvan koga kratkosežna jaka sila ne može više da ih drži zajedno, proces njihove separacije se odvija posredstvom energije (dalekosežnog) elektromagnetskog odbijanja između dva fragmenta. Rezultat su dva fisiona fragmenta koji se udaljavaju jedan od drugog, noseći visok sadržaj energije.

Oko 6 MeV fisione ulazne energije dolazi od jednostavnog vezivanja jednog dodatnog neutrona u teško jezgro dejstvom jake sile; mada, kod mnogih izotopa podložnih fisiji, ta količina energije nije dovoljna. Uranijum-238, na primer, ima skoro ništavnu fisionu poprečnu sekciju za neutrone sa manje od jednog MeV energije. Ako se ne unese dodatna energija putem nekog drugog mehanizma, ne dolazi do fisije jezgra, nego se samo apsorbuje neutron, kao što je to slučaj kad U-238 apsorbuje spore i čak izvesni udeo brzih neutrona, čime postaje U-239. Preostala energija neophodna za inicijaciju fisije može proizaći iz jednog od dva druga mehanizma: jedan od kojih je unos viška kinetičke energije ulaznih neutrona, koji su u sve većoj meri sposobni to izazovu fisiju podložnih teških jezgara, kad njihova kinetička energija prelazi jedan MeV (oni su takozvani brzi neutroni). Takvi visoko energetski neutroni modu da direktno izazovu rascep U-238 (oni nalaze primenu u termonuklearnom oružju, u kome brzi neutroni proističu iz nuklearne fuzije). Međutim, taj proces nije podesan za široku primenu u nuklearnim reaktorima, pošto suviše mali udeo fisionih neutrona proizvodenih bilo kojim tipom fisije ima dovoljno energije da efiktivno rascepi U-238 (fisioni neutroni imaju mod energije od 2 MeV, ali je medijan samo 0,75 MeV, što znači da pola njih ima nedovoljnu energiju).[6]

Među teškim aktinoidnim elementima, izotopi koji imaju neparan broj neutrona (kao što je U-235 sa 143 neutrona) vezuju ekstra neutron sa dodatnih 1 do 2 MeV energije u odnosu na izotop istog elementa sa parnim brojem neutrona (kao što je U-238 sa 146 neutrona). Ta ekstra energija vezivanja je dostupna kao result efekta neutronskog uparivanja. Ta ekstra energija proizilazi iz Paulijevog principa isključivanja kojim se dozvoljava dodatnom neutronu da zauzme istu nuklearnu orbitalu kao i zadnji neutron u nukleusu, tako da oni formiraju par. Kod takvih izotopa, stoga nije neophodna neutronska kinetička energija, pošto se sva neophodna energija dobija apsorpcijom neutrona, bilo sporog ili brzog, pri čemu se spori neutroni koriste u nuklearnim reaktorima sa moderatorm, a brzi u brzim neutronskim reaktorima, i oružju). Kao što je već napomenuto, potgrupa elemenata podložnih fisiji se mogu efektivno cepati njihovim sopstvenim fisionim neutronima (čime se potencijalno može izazvati nuklearna lančana reakcija u relativno malim količinama čistog materijala). Primeri su izotopi U-235 i plutonijum-239.

Izlaz

[uredi | uredi kod]

Tipični fisioni događaji otpuštaju oko dve stotine miliona eV (200 MeV) energije pri svakom fisionom događaju. Izbor izotopa ima malog uticaja na količinu oslobođene energije. To se može lako uočiti pregledom krive energije vezivanja. Prosečna energija vezivanja aktinoidnih jezgara počevši od uranijuma je oko 7,6 MeV po jezgru. Idući na levo duž krive energije vezivanja, gde se fisioni produkti grupišu, lako se može uočiti da energija vezivanja fisionih produkata teži da bude oko 8,5 MeV po nukleonu. Stoga u svakom fisionom događaju izotopa u aktinoidnom opsegu mase, oko 0,9 MeV se oslobađa po nukleonu početnog elementa. Fisija U235 sporim neutronom proizvodi skoro identičnu količinu energije sa fisijom U238 brzim neutronom. Taj profil oslobađanja energije takođe važi za torijum i razne manje aktinoide.[7]

U kontrastu s tim, većina reakcija hemijske oksidacije (kao što su sagorevanje uglja ili TNT) oslobađaju u najboljem slučaju nekoliko eV po događaju. Stoga, nuklearno gorivo sadrži najmanje deset miliona puta više korisne energije po jedinici mase nego hemijsko gorivo. Energija nuklearne fisije se oslobađa kao kinetička energija fisionih produkata i fragmenata, i kao elektromagnetna radijacija u obliku gama zraka; u nuklearnom reaktoru, energija se konvertuje u toplotu pošto se čestice i gama zraci sudaraju sa atomima od kojih je napravljen reaktor i njegovim radnim fluidom, obično vodom ili u nekim slučajevima teškom vodom ili istopljenim solima.

Pri rascepu jezgara uranijuma u fragmente jezgra, oko 0,1 % mase uranijumskih jezgara[8] prelazi u energiju fisije od ~200 MeV. Za uranijum-235 (totalna prosečna fisiona energija je 202,5 MeV), tipično se ~169 MeV javlja kao kinetička energija rascepljenih jezgara, koja lete sa oko 3% brzine svetlosti, usled Kulonovske repulzije. Takođe, u proseku se emituje 2,5 neutrona, sa prosečnom kinetičkom energijom po neutronu od ~2 MeV (totalno 4.8 MeV).[9] Reakcija fisije takođe oslobađa ~7 MeV u obliku fotona gama zraka. Iz te vrednosti proizilazi da nuklearno fisiona eksplozija ili nesrećni slučaj emituje oko 3,5% svoje energije u obliku gama zraka, što je manje od 2,5% energije brzih neutrona (totalna vrednost oba tipa radijacije je ~ 6%), a ostatak je kinetička energija fisionih fragmenata (ona se pojavljuje skoro odmah nakon što fragmenti dođu u susret sa okružnom materijom, kao jednostavna toplota). U atomskoj bombi, ta toplota može da služi za povišenje temperature jezgra bombe do 100 miliona kelvina i da uzrokuje sekundarnu emisiju X-zraka, koji konvertuju deo te energije u jonizacionu radijaciju. Međutim, u nuklearnim reaktorima, kinetička energija fisionih fragmenata se zadržava kao toplota niske temperature, koja uzrokuje malo jonizacije, ili je nema.

Takozvane neutronske bombe (poboljšana radijaciona oružja) su konstruisana tako da oslobađaju veći udeo svoje energije kao jonizujuće zračenje (specifično neutrone), mada su sve one termonuklearni uređaji koji se oslanjaju na stupanj nuklearne fuzije za proizvodnju dodatne radijacije. Energijska dinamika čiste fisione bombe se uvek zadržava na oko 6% prinosa u obliku radijacije, kao direktni rezultat fisije.

Totalna energija brze fisije doseže oko 181 MeV, ili ~ 89% totalne energije koja se konačno oslobađa fisijom tokom vremena. Preostalih ~ 11% se oslobađa u obliku beta raspada koji ima vazne polu-živote, ali odmah počine kao proces u fisionim produktima; i u obliku odloženih gama emisija vezanih za te beta raspade. Na primer, u uranijumu-235 ta odložena energija je podeljena u oko 6,5 MeV u betama, 8,8 MeV u antineutrinima (oslobođenim u isto vreme kao i bete), i konačno, dodatnih 6,3 MeV u odloženim gama emisijama iz pobuđenih produkata beta-raspada (za prosečnu totalnu emisiju od ~10 gama zraka po fisiji). Stoga, oko 6,5% totalne energije fisije se oslobađa nakon događaja, kao odložena jonizujuća radijacija, i odložena jonizujuća energija je ravnomerno podeljena između gama i beta zraka.

U reaktoru koji je radio izvesno vreme, radioaktivni fisioni produkti se nakupljaju do koncentracija stabilnog stanja, tako da je njihova brzina raspadanja jednaka njihovoj brzini formiranja, tako da je njihov frakcioni totalni doprinos toploti reaktora (putem beta raspada) jednak doprinosu radioizotopske frakcije. Pod tim uslovima, 6,5% fisije se javlja kao odložena jonizaciona radijacija (odložene game i bete iz radioaktivnih fisionih produkata) koja doprinosi stabilnom stanju reaktorske toplotne produkcije. Ta frakcija zaostaje kad se reaktor naglo zatvori (pri hitnom isključivanju). Iz tog razloga, reaktorski izlaz toplote raspada počinje sa oko 6,5% pune fisione snage reaktoriskog stabilnog stanja, nakon zaustavljanja reaktora. Međutim, u toku nekoliko sati, usled raspada tih izotopa, izlazna snaga raspada je daleko manja.

Ostatak energije raspada (8,8 MeV/202,5 MeV = 4,3% totalne fisione energije) se emituje kao antineutrini, koji se kao praktična materija, ne smatraju „jonizacionom radijacijom“. Energija oslobođena u obliku antineutrina se ne zadržava materijalom reaktora kao toplota, nego direktno prolazi kroz sve materijale (uključujući Zemlju) brzinom koja je blizo brzine svetlosti, i odlazi u interplanetarni prostor (apsorbovana količina je zanemarljiva). Neutrinska radijacija se obično ne klasifikuje kao jonizaciona radijacija, pošto se skoro u potpunosti ne apsorbuje i stoga ne proizvodi efekte (mada su veoma retki neutrinski događaji jonizujući). Skoro celokupan ostatak radijacije (6,5% odložene beta i gama radijacije) se konačno konvertuje u toplotu u jezgru reaktora ili njegovom zaštitnom omotaču.

Neki procesi u kojima učestuvuju neutroni su primetni po apsorbovanju ili konačnom prinosu energije — na primer neutronska kinetička energija ne daje odmah toplotu ako je neutron zarobljen atomom uranijuma-238, čime se stvara plutonijum-239, ali se ta energija emituje ako kasnije dođe do fisije plutonijuma-239. Sa druge strane, takozvani odroloženi neutroni emitovani kao radioaktivni produkti raspada sa polu-životima do nekoliko minuta, iz produkata fisije, su veoma važni za kontrolu reaktora, zato što oni daju karakteristično „reakciono“ vreme za udvostručavanje veličine totalne nuklearne reakcije, ako se reakcija odvija u „odloženoj kritičnoj“ zoni koja se namerno oslanja na te neutrone za superkritičnu lančanu reakciju (u kojoj svaki fisioni ciklus proizvodi više neutrona nego što ih apsorbuje). Bez njihovog postojanja, nuklearna lančana reakcija bi bila brzo kritična i povećala bi se brže nego što be se mogla kontrolisati ljudskom intervencijom. U tom slučaju, prvi eksperimentalni atomski reaktori bi otišli izvan kontrole u opasne i zbrkane „brze kritične reakcije“ pre nego što bi njihovi operatori mogli da ih ručno zaustave (iz tog razloga, dezajner Enriko Fermi je uveo radijacijom kontra pobuđene kontrolne šipke, suspendovane elektromagnetima, koje mogu da automatski padnu u centar Čikago gomile-1). Ako su ti odloženi neutroni uzvaćeni bez izazivanja fisije, oni takođe proizvode toplotu.[10]

Reference

[uredi | uredi kod]
  1. Arora M. G., Singh M.: "Nuclear Chemistry", publisher = Anmol Publications, [1] 1994.
  2. Saha Gopal: "Fundamentals of Nuclear Pharmacy", publisher = Springer Science+Business Media, [2] 2010.
  3. [3][mrtav link] "Uvod u nuklearnu energetiku", Prof. dr. sc. Danilo Feretić, 2011.
  4. [4] Arhivirano 2017-07-31 na Wayback Machine-u "Od rude do žutog kolača", Nuklearna elektrana Krško, 2011.
  5. S. Vermote, et al. (2008) "Comparative study of the ternary particle emission in 243-Cm (nth,f) and 244-Cm(SF)" in Dynamical aspects of nuclear fission: proceedings of the 6th International Conference. J. Kliman, M. G. Itkis, S. Gmuca (eds.). World Scientific Publishing Co. Pte. Ltd. Singapore.
  6. J. Byrne (2011) Neutrons, Nuclei, and Matter, Dover Publications, Mineola, NY, p. 259, ISBN 978-0-486-48238-5.
  7. Marion Brünglinghaus. „Nuclear fission”. European Nuclear Society. Arhivirano iz originala na datum 2013-01-17. Pristupljeno 2013-01-04. 
  8. Hans A. Bethe (April 1950), "The Hydrogen Bomb", Bulletin of the Atomic Scientists, p. 99.
  9. These fission neutrons have a wide energy spectrum, with range from 0 to 14 MeV, with mean of 2 MeV and mode (statistics) of 0.75 Mev. See Byrne, op. cite.
  10. „Nuclear Fission and Fusion, and Nuclear Interactions”. National Physical Laboratory. Pristupljeno 2013-01-04. 

Literatura

[uredi | uredi kod]
  • DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 1. U.S. Department of Energy. January 1993. Arhivirano iz originala na datum 2014-03-19. Pristupljeno 2012-01-03. 
  • DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 2. U.S. Department of Energy. January 1993. Arhivirano iz originala na datum 2013-12-03. Pristupljeno 2012-01-03. 
  • G. H. Golub, J. M. Ortega: Wissenschaftliches Rechnen und Differentialgleichungen. Eine Einführung in die Numerische Mathematik. Heldermann Verlag, Lemgo 1995, ISBN 3-88538-106-0.
  • G. Oberholz: Differentialgleichungen für technische Berufe – vierte Auflage. Verlag Anita Oberholz, Gelsenkirchen 1995, ISBN 3-9801902-4-2.
  • P.J. Olver Equivalence, Invariants and Symmetry Cambridge Press 1995.
  • L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 2. Viewegs Fachbücher der Technik, Wiesbaden 2001, ISBN 3-528-94237-1.
  • H. Stephani Differential Equations: Their Solution Using Symmetries. Edited by M. MacCallum, Cambridge University Press 1989.
  • Benker, H.: "Differentialgleichungen mit MATHCAD und MATLAB", Springer-Verlag Berlin, Heidelberg, New York 2005.
  • Бартоломей Г. Г., Байбаков В. Д., Алхутов М. С., Бать Г. А. (1982). Основы теории и методы расчета ядерных энергетических реакторов. M: Энергоатомиздат. 
  • Камерон И. (1987). Ядерные реакторы. M: Энергоатомиздат. 
  • Климов А.Н. (1985). Ядерная физика и ядерные реакторы. M: Энергоатомиздат. 
  • К. Н. Мухин (1993). Экспериментальная ядерная физика. 1. Физика атомного ядра. Ч. I. Свойства нуклонов, ядер и радиоактивных излучений. М: Энергоатомиздат. ISBN 5-283-04080-1. 
  • К. Н. Мухин (1993). Экспериментальная ядерная физика. 1. Физика атомного ядра. Ч. II. Ядерные взаимодействия. M: Энергоатомиздат. ISBN 5-283-04081-X. 
  • Cyriel Wagemans (1991). The Nuclear Fission Process (1-е изд izd.). CRC Press. ISBN 978-0849354342. 
  • Niels Bohr, John Archibald Wheeler (1939). „The Mechanism of Nuclear Fission”. Physical Review 56 (5): 426—450. 
  • S. Bjørnholm, J. E. Lynn (1980). The double-humped fission barrier. 52. Reviews of Modern Physics. pp. 725−931. 
  • Balraj Singh, Roy Zywina and Richard B. Firestone (2002). Table of Superdeformed Nuclear Bands and Fission Isomers: Third Edition (October 2002). 97. Nuclear Data Sheets]. pp. 241—592.  (свободный препринт Arhivirano 2016-03-04 na Wayback Machine-u)
  • André Michaudon (2000) (en). From Alchemy to Atoms. The making of plutonium. Los Alamos Science. pp. 62—73. 

Vanjske veze

[uredi | uredi kod]