
Free Software Distributions and Ancillary Rights

Eben Moglen & Mishi Choudhary

March 27, 2017

Distributions and Their Legal Structures

Distributions of free software involve sharing of computer program, which is
mostly governed by copyright law.1 But other legal rights, involving trademark,
patent, trade dress protection, protection against unfair competition, and other
legal doctrines are potentially involved as well. At the level of a single work,
such as the Apache web server or the GNU Compiler Collection, these ancillary
legal rights rarely raise complex issues of nesting or interaction for analysis.

But when hundreds or thousands of programs and associated files containing doc-
umentation or configuration data combined into “packages” are then aggregated
into “distributions” such as Debian, Fedora, RHEL or Ubuntu, the significance
of these related rights increases, and the complexity of their interaction does
as well. How the trademark and other rights associated with the component
packages—those of the Apache Software Foundation on the packages it pub-
lishes, for example— interact with the trademarks, competition rights and other
ancillary powers of the distribution manufacturers, such as Red Hat, Debian or
Canonical, cannot be determined solely by analysis of the copyright licenses on
the programs involved. Each party’s trademark licensing policies, for example,
will affect the real rights and relations of parties, beyond the content of the
FOSS licenses used.

This document takes these “peripheral” rights as its central subject.

Copyrights

Anthologies

Copyright licenses are both the primary legal regulation of users’ right in distribu-
tion components, and one of the ancillary rights bundle for distribution-makers.

1See Chapter 2 of A Legal Issues Primer for Open Source and Free Software Projects

1

http://softwarefreedom.org/resources/2008/foss-primer.html#x1-40002


The unit of copyright law is the “work,” which usually signifies one computer
program within a package, or one manual presented as a text file or series of text
files. A package also usually contains some uncopyrightable works, configuration
data or other material which lacks the required “originality” for copyrightability.
But all of the files in a package selected and arranged by the distribution-maker,
also form part of the complex combination of software that is the “distro.”

Understanding the distribution, as a copyright matter, therefore requires discus-
sion of compilation copyright. “Compilation” as a term of art in US copyright
law means “a work formed by the collection and assembling of preexisting ma-
terials or of data that are selected, coordinated, or arranged in such a way
that the resulting work as a whole constitutes an original work of authorship.”2

Compilations, under US law, includes “collective works,” which are defined as “a
work, such as a periodical issue, anthology, or encyclopedia, in which a number
of contributions, constituting separate and independent works in themselves, are
assembled into a collective whole.”3

Under 17 U.S.C. §103(b),

The copyright in a compilation or derivative work extends only to
the material contributed by the author of such work, as distinguished
from the preexisting material employed in the work, and does not
imply any exclusive right in the preexisting material. The copyright in
such work is independent of, and does not affect or enlarge the scope,
duration, ownership, or subsistence of, any copyright protection in
the preexisting material.

A free software distribution, like Debian, Fedora, RHEL or Ubuntu is a compila-
tion, not only a collective work, because the packages within the distribution will
themselves contain—along with various separate and independent works, consist-
ing of computer programs and documentation—other, modified, copyrightable
or uncopyrightable files that “coordinate” and “arrange” the software, such
as configuration data and package management information. These additions,
necessary to the integration of the component works, create an original work of
authorship.

Copyright in a compilation gives the compiler exclusive rights to the selection and
arrangement of the individual components, regardless of the copyright status of
those components, and who holds copyright on them.4 The compilation copyright
neither ousts nor modifies the respective authors’ exclusive rights, which must
be licensed to the compilation-maker in order to create the compilation.

217 U.S.C. §101
3Id.
4Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 348-350 (U.S. 1991)

2



Selection and Arrangement

The activity of putting together a distribution of free software packages in-
volves selecting and arranging packages; creating necessary intra-package and
distribution-wide management and configuration information; compiling, process-
ing or otherwise creating executable files from source code trees; and arranging
the resulting distribution files for convenient acquisition, installation and updat-
ing by users. Some of these actions give rise to copyrightability in the resulting
aggregation of software, in the same way that the choice and sequencing of liter-
ary works in an anthology gives rise to copyright.5 The decision to include the
Apache web server, or the lighttpd web server, or both, in a distribution is part
of the selection and arrangement that gives rise to the “anthology copyright” on
the distro as a whole. Other portions of the distribution-maker’s activity result
in purely functional files or mechanical transformations of others’ copyrighted
works, valuable to the user but not subject to copyright because not an “original
work of authorship,” such as the binaries compiled from others’ source code.
Some results from these latter activities may give rise to other ancillary rights,
under, for example, domestic law of legal protection for databases created and
maintained as part of the distribution.6

In-House Code

The process of making distributions involves no small amount of additional
programming. Maintenance to package code, works specific to the distribution,
activities and projects specifically produced or sponsored by the distribution-
maker—all comprise a significant fraction of the software in major distributions.
These activities produce their own independent copyrights in many instances.
These work- or package-level copyrights form another part of the web of ancillary
rights held by distribution makers.

Configuration copyright

Most packages in a distribution contain configuration data, specifying details of
the package’s operation when installed. Default options, file pathnames, device-
or system-specific information and other functionally useful details are contained
in these configuration files, which are often annotated by text explaining for
human readers what the configuration values mean and how to modify them.
These configuration files are thinly copyrightable, if they can be said to fall within
copyright scope at all. The sum of these configuration files—which allow all the
packages in a distribution to work together smoothly because they are compatibly
configured—expresses precisely the creative selection and arrangement of the

5See generally eScholar, LLC v. Otis Educ. Sys., Inc., 387 F. Supp. 2d 329 (S.D.N.Y. 2005)
6Choice of law issues are not within the scope of this discussion. For present purposes, the

analysis is conducted solely under US copyright and trademark laws.

3



distro. So while the copyrightability of the individual files may be doubtful or
scant, the overall effect of these fragmented copyrights is substantial.

Nested Copyright

Making distributions out of others’ free software packages therefore results in
“nested” or concentric copyright. The copyrights on files and works within
packages are licensed individually, according to the FOSS or free culture licenses
on the programs and documentation contained. Where these license terms
offered are copyleft terms, they are essentially the only terms that apply to the
licensed works no matter what happens at outer concentric layers: no enclosing
copyright may be used to place additional restrictions on those works.7 Where
the terms offered on works are “permissive” in nature, license terms at outer
concentric layers may change the terms applicable to those component works.
For example, a distribution containing thousands of packages may be licensed
overall by a EULA that conditions use on acceptance of a warranty disclaimer. If
the constituent copyright licenses on individual works within the distribution are
permissive, that disclaimer may affect rights in the constituent works. When the
disclaimer in the EULA wraps a copyleft license on a constituent work, however,
the component license may either abrogate the EULA’s disclaimer, as do the
terms of GPLv2, or permit such a disclaimer for purposes of compliance with
local domestic law, as do the terms of GPLv3. In this situation of “nested terms,”
permissive licensing propagates copyright permissions “from outside inwards,”
while copyleft licensing propagates the permissions “from inside outwards.” A
distribution maker’s power to enforce its exclusive rights over the compilation is
therefore limited in the case of free software distributions, in two directions. First,
the compilation copyright extends only to the unique elements of selection and
arrangement. It is not possible, for example, to say that any distribution with
kernel packages, a C library package and userland applications packages infringes
copyright on the selection and arrangement of one particular distribution. Second,
the presence of copyleft-licensed components within a distribution limits the
restrictions that can be placed by distribution-wide licensing on at least some of
the component works within the distribution.

For the distribution-maker, the copyrighted compilation includes both source
code files and executables. The binary files within the distribution will be
copylefted if they are made from GPL’d sources in whole or part, but if the
binaries were produced from the compilation of permissively-licensed source
code—or source code licensed under “weak copyleft” terms like those in CDDL,
Eclipse and similar licenses—those binaries may be subject to the copyright
terms of the distribution-wide EULA or other outer-layer licenses, thus forming
an additional ancillary right for the distribution-maker.

7See Concepts and License Mechanics of Copyleft in Software Freedom Law Center Guide
to GPL Compliance 2nd Edition

4

https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html#concepts-and-license-mechanics-of-copyleft
https://www.softwarefreedom.org/resources/2014/SFLC-Guide_to_GPL_Compliance_2d_ed.html#concepts-and-license-mechanics-of-copyleft


Another form of distribution or aggregation of free software has become important
of late. A “container,” of whatever particular format now fashionable it may
be, is an aggregation of free software comprising a “ready to run” filesystem
containing OS components, other relevant dependencies, and the container
user’s own application workload. Within the container, these various software
aggregations may be represented as a collection of compressed archive files, for
example, all of which, when expanded, present the full filesystem intended for
execution. The container can be compared roughly to a “live CD” filesystem,
or a bootable USB filesystem, which have been and remain popular modes of
aggregate free software distribution.

In a container, as in one of these conceptual predecessors, the copyleft binary
components are—from the point of view of GPLv2, for example—placed in
“mere aggregation” with other non-GPL binaries, not in a combination triggering
copyleft. So being in the same container with a GPL’d binary doesn’t propagate
the copyleft “outward.” (The same requirements to provide or offer source code
for the GPL’d executables apply, however, if A provides a “container” to B as
would be imposed if A provided a CD or USB key to B with the same GPL’d
executables on it.)

But the selection and arrangement of works aggregated in a container could,
even if the container was made under program control, give rise to “anthology”
copyright over the aggregate. The terms on which this anthology is licensed
could theoretically modify the terms on permissively-licensed works within the
container, as we have seen in other contexts.

So far as we are aware, no container-related anthology-level copyright issues have
so far occurred in practice. Parties have been more concerned with a non-existent
copyleft inheritance issue, where GPL’d binaries are included in containers also
containing proprietary or other non-copyleft executables. Once this uncertainty
has subsided, however, the issue of EULA-like enclosing licenses on containers is
likely to arise in one or more commercial contexts.

Trademarks

The essence of trademark is the association of a name with the source or origin
of goods in the marketplace.8 The property right in the name given to the
trademark holder is balanced by the social advantage consumers derive from
the assurance of quality names convey. Accordingly, in the United States, the
essence of trademark liability is the creation of “confusion” by disturbance of
the relationship between the known mark and the inferred source, origin, and
quality of goods.9

815 U.S.C. §1127
915 U.S.C. §1114

5



Descriptive names can be trademarks, in the US, only to the extent that the
descriptive name has acquired “secondary meaning,” that is, has come to be
associated with the particular source or origin of goods through use and ac-
ceptance in the marketplace. Even an arbitrary name, such as Kleenex, can
become “genericized” through the process of broad social use, such that the
secondary meaning associated with a particular producer of paper in which to
blow your nose has evaporated over time. Unlike copyrights, trademark rights
are subject to defeasement through failure to protect the mark. The trademark
owner’s failure to prevent confusion can lead to loss of rights.10 Trademark
owners are therefore required to take measures to “police” their marks, which
is why trademark enforcement often occurs in situations that seem in isolation
oppressive or trivial.

Free software programs and packages are named; the names chosen are often
registered as trademarks.11 In order to avoid possible loss of the mark through a
finding of “naked licensing,” the projects using trademarked names need to make
licensing policies, stating clearly the terms on which the marks, whether textual
or graphical, may be applied to modified or redistributed versions. They need
to be prepared to show that their policies are enforced.12 Unlike commercial
licensors, who belligerantly enforce their marks, it is often in the interest of free
software projects to make liberal trademark policies, allowing those downstream
who modify or repackage their code to make use of their marks. The origin of the
free software is explicitly designated, by the use of the package’s trademarked
name, while the fact that the distribution and some or all component packages
have been modified is also indicated in the modified version’s documentation
and source code. Clearly indicating the origin of modifications while retaining
the name of the package obviates risk of confusion.

Distributions, in turn, also have names, which are very likely to be registered as
trademarks. They too have licensing policies, which govern the conditions under
which the names can be used to identify, among other things, compilations of
software that originate from the trademarked distribution, but which may have
been modified downstream. Community distributions, such as Debian, are likely
to have different trademark licensing policies than commercial distributions.
The interests of the two kinds of parties dictate different balances between
encouraging modification and redistribution, on the one hand, and protecting
asset values, including of intangible property rights in names, on the other.

Our practice at SFLC involves writing and enforcing licensing policies for distri-
butions like Debian, as well as package trademarks like those of Kodi (formerly
XBMC). We therefore deal with the consequences of “nested trademarks” as
we deal with the consequences of nested copyright. Here, the effect of nesting
is different than it is in copyright. In the nesting of copyrights, outer-level
licenses, like EULAs on an entire distribution, can displace terms at the inner

10See, e.g., Bayer Co. v. United Drug Co., 272 F.505 (S.D.N.Y. 1921)
11See Chapter 5 in A Legal Issues Primer for Open Source and Free Software Projects
12FreecycleSunnyvale v. The Freecycle Network, 626 F.3d 509 (9th Cir. 2010)

6

http://softwarefreedom.org/resources/2008/foss-primer.html#x1-700005.6


level, unless those work-level or package-level terms are protected by copyleft.
In trademark, however, the terms for use of a distribution name have no effect
on the terms governing the use of package or program trademarked names. The
policy regarding the use of the mark “Debian,” or the mark “Ubuntu” cannot
displace or modify the policies regarding use of the words “Apache,” or “Kodi,”
put in place by the owners of those package-level marks.

The Problem of Origin

In free software distributions, where modifications occur at many levels as code
moves from upstream to multiple downstreams, the origin of goods cannot
necessarily be referred to a single point. The packages contained within the
distribution have an origin indicated by the project name associated with the
package: the Apache webserver, GNU tar, etc. The distribution name indicates
another point of origin: the Debian distribution’s sid version’s modified copy of
the Apache webserver, for example. In some cases, the trademark licensing policy
of the component will dictate that the name be changed in the distribution, as
with the historical renaming of Firefox to Iceweasel in Debian.13

At each level of enclosure, from the single program through the package to the
distribution, the interest of the trademark holder is in preventing uses of the name
which may confuse the ultimate user about the origin of the software, both in order
to protect the user’s quality perception of the “brand” established by the name,
and to prevent harmful associations. The latter motive is important, for example,
when a media player like Kodi is distributed by makers of “distributions” who
add plug-ins to the player that facilitate the acquisition of copyright-infringing
media files.

For this reason, the trademark licensing policies of both package and distri-
bution markholders may require that materials bearing trademarks (graphical
elements in UI design, documentation, etc., for example) must be removed from
modified and redistributed versions, to prevent “confusion” as to origin. If such
requirements are imposed by policy, but made difficult to implement, they could
function as barriers to the redistribution of the free software itself, which—in the
case of copylefted software—would imply a prohibited imposition of additional
restrictions. In such cases, copyleft requires that the materials added midstream
by the trademark owner to preexisting copylefted software be so segregated that
they can with reasonable effort be removed by downstream modifiers. Nothing,
on the other hand, ever requires a downstream party to retain a trademarked
name it would rather remove.

13As of February 2016, issues between the Debian project and Mozilla Foundation about use
of the Firefox trademark, pending since 2006, have been resolved.

7



Confusion Prevention—Package Quality Control

The rules that determine what names can be used for modified versions of FOSS
programs are found not in the copyright licenses, but in the trademark licensing
policy of the entity that controls each mark. The licensor’s primary incentive is
to prevent the quality assumptions that have been built into the mark from being
deprecated downstream. This incentive prevents projects and packagers from
being as permissive in trademark licensing as they are in their copyright licenses.
It is sufficient, in most free software copyright licenses, that modified versions be
so designated 14 But if program FOO, whose name is trademarked by its authors,
is modified downstream and the modifications are properly designated in the
source code as required by FOO’s license, that does not put at ease the minds
of FOO’s developers if the modifications contain serious bugs that will cause
users of modified FOO to experience harm, thus deprecating FOO’s reputation
for quality. For this reason, the FOO project’s trademark policy could require
that modification patchsets be reviewed by FOO’s developers before they will
license use of the trademark FOO as the name of the modified version.

Confusion Prevention—Distribution Conflict

Trademark licensing policies can also play a role in avoiding confusion not only
in end-user perception but also in technical coordination at the distribution
level. Let’s take an imaginary trademarked free software distribution called
Blue Sock, containing the Linux kernel, a C library, and a collection of userland
applications, some produced by third-party free software projects, but with a
large component of in-house code. BS is arranged and configured in a distinctive
fashion, optimized for use in retailing and agriculture. Downstream, Blue Sock
is modified by Cloudiness Worldwide, a “virtual personal server” vendor to
aquaculturists everywhere. CW may apply patches to packages within the Blue
Sock distribution it offers to CW customers that conflict with maintenance
directly applied by BS upstream, or which may interact with BS’s in-house
code in unexpected ways. Resulting breakage in Cloudiness VPSs may be
wrongly attributed by end users to quality failures at Blue Sock. If Blue Sock
is a commercial distribution, this risk may well be sufficiently grave to justify
trademark policy restrictions that would prevent Cloudiness Worldwide from
calling its VPS operating system “Blue Sock” unless, for example, BS is accorded
an opportunity to review and coordinate its technical maintenance activities
with CW’s.

14See Managing copyright information within a free software project

8

https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html


Communities and Companies

The difficulties that arise from overlapping rights occur most sharply at the
transitions between non-commercial and commercial parties. For non-commercial
projects, packagers, or distribution-makers—who as a general rule do not license
rights for revenue—license terms on trademarks are set by the need to affirm
quality and provenance. Commercial parties, both downstream and upstream
from non-commercial producers and packagers, on the other hand, not only
may wish to monetize their ancillary rights, but also to use those rights to
compete more effectively against other parties in the marketplace. As a result,
the interleaved structures of nested rights created by aggregating free software
programs into distributions may behave counter-intuitively when parties within
the structure aggressively assert their ancillary rights.

Although the same issues present at commercial/non-commercial boundaries are
present everywhere, the variance in motives leads to greater chance of mutual
misunderstanding and resulting social conflict.

As we have observed, copyright and trademark rules “nest” differently, in the
concentric structures of free software distribution. On the trademark side, en-
forcement of trademark licensing policies is legally required. But non-commercial
upstreams not engaged in monetizing their rights tend to have more liberal trade-
mark licensing policies than their commercial downstreams. Thus, for example,
Debian allows far more use of the Debian mark by downstream distributions than
Red Hat allows. The Red Hat trademark policy does not allow even unmodified
copies of RHEL to be called “Red Hat” by the distributor, without specific
written permission. Debian’s policy, on the other hand, allows any factually
truthful assertion of Debian’s relation to other parties’ services and software, so
long as no misleading or confusing use of the Debian marks is involved. So a
modified distribution of software made downstream from Canonical using modi-
fied Ubuntu packages could conceivably be called “Debian-based,” in compliance
with Debian’s trademark policy, even though it could not be called “Ubuntu”
under Canonical’s policy.

More generally, if non-commercial distribution A, with a liberal trademark
licensing policy, is upstream from commercial distribution B, which chooses to
impose more restrictions on the use of its own name in support of its business
interests, the makers of downstream distributions or providers of PaaS services C,
D, and E may choose to trumpet their descent from A, dropping B’s name from
sight altogether, to B’s ultimate loss. The resulting complexities in both policy
drafting and enforcement strategy have no analogues in conventional trademark
practice.

The copyright rules applicable to the same situation, on the other hand, are
determined by the right/left valance of the licensing of each component work.
If, for example, Canonical has applied a EULA that imposes requirements on
binaries made from permissively-licensed free software programs distributed

9



as part of Ubuntu and also in Debian, those binaries cannot be copied into
another distribution under non-Canonical terms. Component packagers who
use permissive licenses may be surprised to discover that the terms on which
downstream users receive their unmodified packages may not be the ones they
themselves applied. Executables of programs subject to strong copyleft cannot be
similarly restricted, because the copyleft on the binaries prohibits the imposition
of any additional restrictions.

Further problems can arise from the enclosing EULAs, or services agreements,
covering PaaS or SaaS distributions of FOSS stacks. The EULA or terms of
service agreement may replace or supplement the terms of every permissive license
used at the package or program level within the distribution, and the terms on
every binary produced from source code under semi-copyleft licenses like Eclipse
or CDDL. If they do not explicitly exempt copyleft-licensed components from
their terms, additional restrictions are imposed on the copylefted components,
and infringement results. The most subtle form of such infringement may be a
term in the services agreement that “licenses” the software in use to the user.
Such a clause would be predictably present if the services agreement involved
the use of proprietary software, but it falls foul of the prohibition of sublicensing
in GPLv3 §2 and the prohibition of additional restrictions in both GPLv2 §4
and GPLv3 §10. Any award of preliminary injunctive remedies during litigation
of resulting claims by even one component’s copyright-holder may effectively
halt the entire distribution. GPL, in both version 2 and version 3, attempts to
save downstream users who are themselves complying with copyleft from being
adversely affected by such litigation. But the licenses can only have their desired
effect on behalf of those users who have received a distribution or to whom
software has been conveyed. Where no distribution or conveyance has happened,
as in the PaaS and SaaS contexts, end users can have no protection against the
harm accruing from their upstream provider’s mistake in sublicensing them.

Conclusion

As this analysis shows, the rights acquired by distribution-makers outside the
copyright licensing context of individual programs and packages are significant,
both in the sense that they provide ample opportunities for distributions’ terms
to affect downstream businesses, and in causing potentially unexpected legal
issues for both upstream and downstream parties.

The invocation of compilation copyright, and its licensing through EULAs and
terms of service agreements by PaaS and SaaS vendors, is an outcome consistent
with application of standard copyright doctrine in the FOSS context. Such
compilation licenses may alter the terms of permissively-licensed packages in
ways that can render executables made from permissively-licensed source code
no longer freely redistributable, even without modification. Trademark licensing
policies applied at the distribution level cannot similarly modify terms on names

10



associated with upstream parties, but they can effectively prevent reuse under
commercially-necessary terms by cloud services providers. Terms of service that
purport to license PaaS and SaaS offerings may interact with copyleft licenses
in ways that harm downstream users despite terms in those copyleft licenses
designed to hold downstreams harmless in the event of license violation by
a mesne distributor. For legal practitioners working on FOSS, although the
program- or package-level licensing details will always be foregrounded, careful
attention to the employment and enforcement of ancillary rights is unavoidably
necessary.

Copyright © 2017 Software Freedom Law Center. Verbatim copying and dis-
tribution of this document is permitted in any medium provided this notice is
preserved.

11


	Distributions and Their Legal Structures
	Copyrights
	Anthologies
	Selection and Arrangement
	In-House Code
	Configuration copyright
	Nested Copyright

	Trademarks
	The Problem of Origin
	Confusion Prevention—Package Quality Control
	Confusion Prevention—Distribution Conflict

	Communities and Companies
	Conclusion

