Search Results for "learning vector quantization"

Showing 126 open source projects for "learning vector quantization"

View related business solutions
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    Vearch

    Vearch

    A distributed system for embedding-based vector retrieval

    Vearch is the vector search infrastructure for deep learning and AI applications. Vearch is a distributed vector storage and retrieval system which can be easily extended to billions scale. Vearch implements a high-performance, lockless real-time vector indexing subsystem that utilizes various optimization techniques to support millisecond vector update and retrieval.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Aerosolve

    Aerosolve

    A machine learning package built for humans

    Aerosolve is an open-source machine learning library developed by Airbnb, designed for interpretable and human-friendly modeling. Built around sparse, human-intuitive features (like geography, pricing), it supports feature quantization, interaction specification, and rule-based priors—enabling domain experts to contribute directly to model behavior.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    NVIDIA® TensorRT™ is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers,...
    Downloads: 14 This Week
    Last Update:
    See Project
  • 4
    SparseML

    SparseML

    Libraries for applying sparsification recipes to neural networks

    SparseML is an optimization toolkit for training and deploying deep learning models using sparsification techniques like pruning and quantization to improve efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dominate AI Search Results Icon
    Dominate AI Search Results

    Generative Al is shaping brand discovery. AthenaHQ ensures your brand leads the conversation.

    AthenaHQ is a cutting-edge platform for Generative Engine Optimization (GEO), designed to help brands optimize their visibility and performance across AI-driven search platforms like ChatGPT, Google AI, and more.
    Learn More
  • 5
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    ...Plus, an 8-bit model also has a 4x smaller memory footprint relative to a 32-bit model. However, often when quantizing a machine learning model (e.g., from 32-bit floating point to an 8-bit fixed point value), the model accuracy is sacrificed.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Weaviate

    Weaviate

    Weaviate is a cloud-native, modular, real-time vector search engine

    Weaviate in a nutshell: Weaviate is a vector search engine and vector database. Weaviate uses machine learning to vectorize and store data, and to find answers to natural language queries. With Weaviate you can also bring your custom ML models to production scale. Weaviate in detail: Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Wikipedia2Vec

    Wikipedia2Vec

    A tool for learning vector representations of words and entities

    Wikipedia2Vec is an embedding learning tool that creates word and entity vector representations from Wikipedia, enabling NLP models to leverage structured and contextual knowledge.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DLRM

    DLRM

    An implementation of a deep learning recommendation model (DLRM)

    ...The implementation is optimized for performance at scale, supporting multi-GPU and multi-node execution, quantization, embedding partitioning, and pipelined I/O to feed huge embeddings efficiently. It includes data loaders for standard benchmarks (like Criteo), training scripts, evaluation tools, and capabilities like mixed precision, gradient compression, and memory fusion to maximize throughput.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Collect! is a highly configurable debt collection software Icon
    Collect! is a highly configurable debt collection software

    Everything that matters to debt collection, all in one solution.

    The flexible & scalable debt collection software built to automate your workflow. From startup to enterprise, we have the solution for you.
    Learn More
  • 10
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    DeepCamera

    DeepCamera

    Open-Source AI Camera. Empower any camera/CCTV

    ...The source code is here It leverages Yolov7 as a person detector, FastReID for person feature extraction, Milvus the local vector database for self-supervised learning to identify unseen persons, Labelstudio to host images locally and for further usage such as label data and train your own classifier. It also integrates with Home-Assistant to empower smart homes with AI technology.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 12
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Google AI Edge Gallery

    Google AI Edge Gallery

    A gallery that showcases on-device ML/GenAI use cases

    ...Each sample is intended to be both a learning aid and a practical starting point: code is organized to show model loading, pre/post-processing, performance measurement, and common optimization knobs (quantization, NNAPI/Delegate usage, and hardware accelerators). The repo also collects small, well-documented models and conversion scripts so developers can reproduce a pipeline from a full-size model down to a device-friendly artifact.
    Downloads: 35 This Week
    Last Update:
    See Project
  • 14
    Lance

    Lance

    Modern columnar data format for ML and LLMs implemented in Rust

    Lance is a columnar data format that is easy and fast to version, query and train on. It’s designed to be used with images, videos, 3D point clouds, audio and of course tabular data. It supports any POSIX file systems, and cloud storage like AWS S3 and Google Cloud Storage.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Linfa

    Linfa

    A Rust machine learning framework

    linfa aims to provide a comprehensive toolkit to build Machine Learning applications with Rust. Kin in spirit to Python's scikit-learn, it focuses on common preprocessing tasks and classical ML algorithms for your everyday ML tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Bolt NLP

    Bolt NLP

    Bolt is a deep learning library with high performance

    Bolt is a high-performance deep learning inference framework developed by Huawei Noah's Ark Lab. It is designed to optimize and accelerate the deployment of deep learning models across various hardware platforms. Bolt is a light-weight library for deep learning. Bolt, as a universal deployment tool for all kinds of neural networks, aims to automate the deployment pipeline and achieve extreme acceleration. Bolt has been widely deployed and used in many departments of HUAWEI company, such as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    FL4Health

    FL4Health

    Library to facilitate federated learning research

    FL4Health is a Vector Institute toolkit for building modular, clinically-focused FL pipelines. Tailored for healthcare, it supports privacy-preserving FL, heterogeneous data settings, integrated reporting, and clear API design.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 24
    Intel Extension for PyTorch

    Intel Extension for PyTorch

    A Python package for extending the official PyTorch

    Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    whisper.cpp

    whisper.cpp

    Port of OpenAI's Whisper model in C/C++

    whisper.cpp is a lightweight, C/C++ reimplementation of OpenAI’s Whisper automatic speech recognition (ASR) model—designed for efficient, standalone transcription without external dependencies. The entire high-level implementation of the model is contained in whisper.h and whisper.cpp. The rest of the code is part of the ggml machine learning library. The command downloads the base.en model converted to custom ggml format and runs the inference on all .wav samples in the folder samples. whisper.cpp supports integer quantization of the Whisper ggml models. Quantized models require less memory and disk space and depending on the hardware can be processed more efficiently.
    Downloads: 327 This Week
    Last Update:
    See Project