AI Models for ChromeOS

Browse free open source AI Models and projects for ChromeOS below. Use the toggles on the left to filter open source AI Models by OS, license, language, programming language, and project status.

  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Build Secure Enterprise Apps Fast with Retool Icon
    Build Secure Enterprise Apps Fast with Retool

    Stop wasting engineering hours. Build secure, production-grade apps that connect directly to your company’s SQL and APIs.

    Create internal software that meets enterprise security standards. Retool connects to your business data—databases, APIs, and vector stores while ensuring compliance with granular permissions and audit logs. Whether on our cloud or self-hosted, build the dashboards and admin panels your organization needs without compromising on security or control.
    Learn More
  • 1
    GLM-4.7

    GLM-4.7

    Advanced language and coding AI model

    GLM-4.7 is an advanced agent-oriented large language model designed as a high-performance coding and reasoning partner. It delivers significant gains over GLM-4.6 in multilingual agentic coding, terminal-based workflows, and real-world developer benchmarks such as SWE-bench and Terminal Bench 2.0. The model introduces stronger “thinking before acting” behavior, improving stability and accuracy in complex agent frameworks like Claude Code, Cline, and Roo Code. GLM-4.7 also advances “vibe coding,” producing cleaner, more modern UIs, better-structured webpages, and visually improved slide layouts. Its tool-use capabilities are substantially enhanced, with notable improvements in browsing, search, and tool-integrated reasoning tasks. Overall, GLM-4.7 shows broad performance upgrades across coding, reasoning, chat, creative writing, and role-play scenarios.
    Downloads: 332 This Week
    Last Update:
    See Project
  • 2
    Z-Image

    Z-Image

    Image generation model with single-stream diffusion transformer

    Z-Image is an efficient, open-source image generation foundation model built to make high-quality image synthesis more accessible. With just 6 billion parameters — far fewer than many large-scale models — it uses a novel “single-stream diffusion Transformer” architecture to deliver photorealistic image generation, demonstrating that excellence does not always require extremely large model sizes. The project includes several variants: Z-Image-Turbo, a distilled version optimized for speed and low resource consumption; Z-Image-Base, the full-capacity foundation model; and Z-Image-Edit, fine-tuned for image editing tasks. Despite its compact size, Z-Image produces outputs that closely rival those from much larger models — including strong rendering of bilingual (English and Chinese) text inside images, accurate prompt adherence, and good layout and composition.
    Downloads: 159 This Week
    Last Update:
    See Project
  • 3
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 122 This Week
    Last Update:
    See Project
  • 4
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference and more effective integration within agent frameworks. GLM-4.6 also enhances writing quality, producing outputs that better align with human preferences and role-playing scenarios. Benchmark evaluations demonstrate that it not only outperforms GLM-4.5 but also rivals leading global models such as DeepSeek-V3.1-Terminus and Claude Sonnet 4.
    Downloads: 118 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    DeepSeek R1

    DeepSeek R1

    Open-source, high-performance AI model with advanced reasoning

    DeepSeek-R1 is an open-source large language model developed by DeepSeek, designed to excel in complex reasoning tasks across domains such as mathematics, coding, and language. DeepSeek R1 offers unrestricted access for both commercial and academic use. The model employs a Mixture of Experts (MoE) architecture, comprising 671 billion total parameters with 37 billion active parameters per token, and supports a context length of up to 128,000 tokens. DeepSeek-R1's training regimen uniquely integrates large-scale reinforcement learning (RL) without relying on supervised fine-tuning, enabling the model to develop advanced reasoning capabilities. This approach has resulted in performance comparable to leading models like OpenAI's o1, while maintaining cost-efficiency. To further support the research community, DeepSeek has released distilled versions of the model based on architectures such as LLaMA and Qwen.
    Downloads: 92 This Week
    Last Update:
    See Project
  • 6
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. This capability is grounded in a new data engine that automatically annotated over four million unique concepts, producing a massive open-vocabulary segmentation dataset and enabling the model to achieve 75–80% of human performance on the SA-CO benchmark, which itself spans 270K unique concepts.
    Downloads: 92 This Week
    Last Update:
    See Project
  • 7
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for immediate responses. They are released under the MIT license, allowing commercial use and secondary development. GLM-4.5 achieves strong performance on 12 industry-standard benchmarks, ranking 3rd overall, while GLM-4.5-Air balances competitive results with greater efficiency. The models support FP8 and BF16 precision, and can handle very large context windows of up to 128K tokens. Flexible inference is supported through frameworks like vLLM and SGLang with tool-call and reasoning parsers included.
    Downloads: 80 This Week
    Last Update:
    See Project
  • 8
    Kimi K2

    Kimi K2

    Kimi K2 is the large language model series developed by Moonshot AI

    Kimi K2 is Moonshot AI’s advanced open-source large language model built on a scalable Mixture-of-Experts (MoE) architecture that combines a trillion total parameters with a subset of ~32 billion active parameters to deliver powerful and efficient performance on diverse tasks. It was trained on an enormous corpus of over 15.5 trillion tokens to push frontier capabilities in coding, reasoning, and general agentic tasks while addressing training stability through novel optimizer and architecture design strategies. The model family includes variants like a foundational base model that researchers can fine-tune for specific use cases and an instruct-optimized variant primed for general-purpose chat and agent-style interactions, offering flexibility for both experimentation and deployment. With its high-dimensional attention mechanisms and expert routing, Kimi-K2 excels across benchmarks in live coding, math reasoning, and problem solving.
    Downloads: 75 This Week
    Last Update:
    See Project
  • 9
    FLUX.2

    FLUX.2

    Official inference repo for FLUX.2 models

    FLUX.2 is a state-of-the-art open-weight image generation and editing model released by Black Forest Labs aimed at bridging the gap between research-grade capabilities and production-ready workflows. The model offers both text-to-image generation and powerful image editing, including editing of multiple reference images, with fidelity, consistency, and realism that push the limits of what open-source generative models have achieved. It supports high-resolution output (up to ~4 megapixels), which allows for photography-quality images, detailed product shots, infographics or UI mockups rather than just low-resolution drafts. FLUX.2 is built with a modern architecture (a flow-matching transformer + a revamped VAE + a strong vision-language encoder), enabling strong prompt adherence, correct rendering of text/typography in images, reliable lighting, layout, and physical realism, and consistent style/character/product identity across multiple generations or edits.
    Downloads: 53 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 10
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3 underwent supervised fine-tuning and reinforcement learning to fully realize its capabilities. Evaluations indicate that it outperforms other open-source models and rivals leading closed-source models, achieving this with a training duration of 55 days on 2,048 Nvidia H800 GPUs, costing approximately $5.58 million.
    Downloads: 52 This Week
    Last Update:
    See Project
  • 11
    HunyuanWorld-Voyager

    HunyuanWorld-Voyager

    RGBD video generation model conditioned on camera input

    HunyuanWorld-Voyager is a next-generation video diffusion framework developed by Tencent-Hunyuan for generating world-consistent 3D scene videos from a single input image. By leveraging user-defined camera paths, it enables immersive scene exploration and supports controllable video synthesis with high realism. The system jointly produces aligned RGB and depth video sequences, making it directly applicable to 3D reconstruction tasks. At its core, Voyager integrates a world-consistent video diffusion model with an efficient long-range world exploration engine powered by auto-regressive inference. To support training, the team built a scalable data engine that automatically curates large video datasets with camera pose estimation and metric depth prediction. As a result, Voyager delivers state-of-the-art performance on world exploration benchmarks while maintaining photometric, style, and 3D consistency.
    Downloads: 52 This Week
    Last Update:
    See Project
  • 12
    LTX-2

    LTX-2

    Python inference and LoRA trainer package for the LTX-2 audio–video

    LTX-2 is a powerful, open-source toolkit developed by Lightricks that provides a modular, high-performance base for building real-time graphics and visual effects applications. It is architected to give developers low-level control over rendering pipelines, GPU resource management, shader orchestration, and cross-platform abstractions so they can craft visually compelling experiences without starting from scratch. Beyond basic rendering scaffolding, LTX-2 includes optimized math libraries, resource loaders, utilities for texture and buffer handling, and integration points for native event loops and input systems. The framework targets both interactive graphical applications and media-rich experiences, making it a solid foundation for games, creative tools, or visualization systems that demand both performance and flexibility. While being low-level, it also provides sensible defaults and helper abstractions that reduce boilerplate and help teams maintain clear, maintainable code.
    Downloads: 49 This Week
    Last Update:
    See Project
  • 13
    HeartMuLa

    HeartMuLa

    A Family of Open Sourced Music Foundation Models

    HeartMuLa is the open-source library and reference implementation for the HeartMuLa family of music foundation models, designed to support both music generation and music-related understanding tasks in a cohesive stack. At the center is HeartMuLa, a music language model that generates music conditioned on inputs like lyrics and tags, with multilingual support that broadens the range of lyric-driven use cases. The project also includes HeartCodec, a music codec optimized for high reconstruction fidelity, enabling efficient tokenization and reconstruction workflows that are critical for training and generation pipelines. For text extraction from audio, it provides HeartTranscriptor, a Whisper-based model tuned specifically for lyrics transcription, which helps bridge generated or recorded audio back into structured text. It also introduces HeartCLAP, which aligns audio and text into a shared embedding space.
    Downloads: 41 This Week
    Last Update:
    See Project
  • 14
    Qwen3-TTS

    Qwen3-TTS

    Qwen3-TTS is an open-source series of TTS models

    Qwen3-TTS is an open-source text-to-speech (TTS) project built around the Qwen3 large language model family, focused on generating high-quality, natural-sounding speech from plain text input. It provides researchers and developers with tools to transform text into expressive, intelligible audio, supporting multiple languages and voice characteristics tuned for clarity and fluidity. The project includes pre-trained models and inference scripts that let users synthesize speech locally or integrate TTS into larger pipelines such as voice assistants, accessibility tools, or multimedia generation workflows. Because it’s part of the broader Qwen ecosystem, it benefits from the model’s understanding of linguistic nuances, enabling more accurate pronunciation, prosody, and contextual delivery than many traditional TTS systems. Developers can customize voice output parameters like speed, pitch, and volume, and combine the TTS stack with other AI components.
    Downloads: 31 This Week
    Last Update:
    See Project
  • 15
    DeepSeek Coder V2

    DeepSeek Coder V2

    DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models

    DeepSeek-Coder-V2 is the version-2 iteration of DeepSeek’s code generation models, refining the original DeepSeek-Coder line with improved architecture, training strategies, and benchmark performance. While the V1 models already targeted strong code understanding and generation, V2 appears to push further in both multilingual support and reasoning in code, likely via architectural enhancements or additional training objectives. The repository provides updated model weights, evaluation results on benchmarks (e.g. HumanEval, MultiPL-E, APPS), and new inference/serving scripts. Compared to the original, DeepSeek-Coder-V2 likely incorporates improved context management, caching strategies, or enhanced infilling capabilities. The project aims to provide a more performant and reliable open-source alternative to closed-source code models, optimized for practical usage in code completion, infilling, and code understanding across English and Chinese codebases.
    Downloads: 30 This Week
    Last Update:
    See Project
  • 16
    HY-World 1.5

    HY-World 1.5

    A Systematic Framework for Interactive World Modeling

    HY-WorldPlay is a Hunyuan AI project focusing on immersive multimodal content generation and interaction within virtual worlds or simulated environments. It aims to empower AI agents with the capability to both understand and generate multimedia content — including text, audio, image, and potentially 3D or game-world elements — enabling lifelike dialogue, environmental interpretations, and responsive world behavior. The platform targets use cases in digital entertainment, game worlds, training simulators, and interactive storytelling, where AI agents need to adapt to real-time user inputs and changes in environment state. It blends advanced reasoning with multimodal synthesis, enabling agents to describe scenes, generate context-appropriate responses, and contribute to narrative or gameplay flows. The underlying framework typically supports large-context state tracking across extended interactions, blending temporal and spatial multimodal signals.
    Downloads: 30 This Week
    Last Update:
    See Project
  • 17
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Downloads: 238 This Week
    Last Update:
    See Project
  • 18
    SAM 3D Objects

    SAM 3D Objects

    Models for object and human mesh reconstruction

    SAM 3D Objects is a foundation model that reconstructs full 3D geometry, texture, and spatial layout of objects and scenes from a single image. Given one RGB image and object masks (for example, from the Segment Anything family), it can generate a textured 3D mesh for each object, including pose and approximate scene layout. The model is specifically designed to be robust in real-world images with clutter, occlusions, small objects, and unusual viewpoints, where many earlier 3D-from-image systems struggle. It supports both single-object and multi-object generation, allowing you to reconstruct entire scenes rather than just isolated items. The repository provides code to run inference, a quickstart demo.py script, and environment setup instructions that connect to hosted checkpoints and configuration files. Outputs are aimed at downstream usability: the reconstructed assets are textured meshes suitable for further editing, rendering, or integration into 3D pipelines and engines.
    Downloads: 24 This Week
    Last Update:
    See Project
  • 19
    DeepSeek-OCR

    DeepSeek-OCR

    Contexts Optical Compression

    DeepSeek-OCR is an open-source optical character recognition solution built as part of the broader DeepSeek AI vision-language ecosystem. It is designed to extract text from images, PDFs, and scanned documents, and integrates with multimodal capabilities that understand layout, context, and visual elements beyond raw character recognition. The system treats OCR not simply as “read the text” but as “understand what the text is doing in the image”—for example distinguishing captions from body text, interpreting tables, or recognizing handwritten versus printed words. It supports local deployment, enabling organizations concerned about privacy or latency to run the pipeline on-premises rather than send sensitive documents to third-party cloud services. The codebase is written in Python with a focus on modularity: you can swap preprocessing, recognition, and post-processing components as needed for custom workflows.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 20
    DeepSeek-OCR 2

    DeepSeek-OCR 2

    Visual Causal Flow

    DeepSeek-OCR-2 is the second-generation optical character recognition system developed to improve document understanding by introducing a “visual causal flow” mechanism, enabling the encoder to reorder visual tokens in a way that better reflects semantic structure rather than strict raster scan order. It is designed to handle complex layouts and noisy documents by giving the model causal reasoning capabilities that mimic human visual scanning behavior, enhancing OCR performance on documents with rich spatial structure. The repository provides model code and inference scripts that let researchers and developers run and benchmark the system on both images and PDFs, with support for batch evaluation and optimized pipelines leveraging vLLM and transformers.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 21
    DeepSeek-V3.2-Exp

    DeepSeek-V3.2-Exp

    An experimental version of DeepSeek model

    DeepSeek-V3.2-Exp is an experimental release of the DeepSeek model family, intended as a stepping stone toward the next generation architecture. The key innovation in this version is DeepSeek Sparse Attention (DSA), a sparse attention mechanism that aims to optimize training and inference efficiency in long-context settings without degrading output quality. According to the authors, they aligned the training setup of V3.2-Exp with V3.1-Terminus so that benchmark results remain largely comparable, even though the internal attention mechanism changes. In public evaluations across a variety of reasoning, code, and question-answering benchmarks (e.g. MMLU, LiveCodeBench, AIME, Codeforces, etc.), V3.2-Exp shows performance very close to or in some cases matching that of V3.1-Terminus. The repository includes tools and kernels to support the new sparse architecture—for instance, CUDA kernels, logit indexers, and open-source modules like FlashMLA and DeepGEMM are invoked for performance.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 22
    HunyuanImage-3.0

    HunyuanImage-3.0

    A Powerful Native Multimodal Model for Image Generation

    HunyuanImage-3.0 is a powerful, native multimodal text-to-image generation model released by Tencent’s Hunyuan team. It unifies multimodal understanding and generation in a single autoregressive framework, combining text and image modalities seamlessly rather than relying on separate image-only diffusion components. It uses a Mixture-of-Experts (MoE) architecture with many expert subnetworks to scale efficiently, deploying only a subset of experts per token, which allows large parameter counts without linear inference cost explosion. The model is intended to be competitive with closed-source image generation systems, aiming for high fidelity, prompt adherence, fine detail, and even “world knowledge” reasoning (i.e. leveraging context, semantics, or common sense in generation). The GitHub repo includes code, scripts, model loading instructions, inference utilities, prompt handling, and integration with standard ML tooling (e.g. Hugging Face / Transformers).
    Downloads: 15 This Week
    Last Update:
    See Project
  • 23
    DeepSeek Coder

    DeepSeek Coder

    DeepSeek Coder: Let the Code Write Itself

    DeepSeek-Coder is a series of code-specialized language models designed to generate, complete, and infill code (and mixed code + natural language) with high fluency in both English and Chinese. The models are trained from scratch on a massive corpus (~2 trillion tokens), of which about 87% is code and 13% is natural language. This dataset covers project-level code structure (not just line-by-line snippets), using a large context window (e.g. 16K) and a secondary fill-in-the-blank objective to encourage better contextual completions and infilling. Multiple sizes of the model are offered (e.g. 1B, 5.7B, 6.7B, 33B) so users can trade off inference cost vs capability. The repo provides model weights, documentation on training setup, evaluation results on common benchmarks (HumanEval, MultiPL-E, APPS, etc.), and inference tools.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 24
    Hunyuan3D-2.1

    Hunyuan3D-2.1

    From Images to High-Fidelity 3D Assets

    Hunyuan3D-2.1 is Tencent Hunyuan’s advanced 3D asset generation system that produces high-fidelity 3D models with Physically Based Rendering (PBR) textures. It is fully open-source with released model weights, training, and inference code. It improves on prior versions by using a PBR texture pipeline (enabling realistic material effects like reflections and subsurface scattering) and allowing community fine-tuning and extension. It supports both shape generation (mesh geometry) and texture generation modules. Physically Based Rendering texture synthesis to model realistic material effects, including reflections, subsurface scattering, etc. Cross-platform support (MacOS, Windows, Linux) via Python / PyTorch, including diffusers-style APIs.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 25
    MiniMax-M2.1

    MiniMax-M2.1

    MiniMax M2.1, a SOTA model for real-world dev & agents.

    MiniMax-M2.1 is an open-source, state-of-the-art agentic language model released to democratize high-performance AI capabilities. It goes beyond a simple parameter upgrade, delivering major gains in coding, tool use, instruction following, and long-horizon planning. The model is designed to be transparent, controllable, and accessible, enabling developers to build autonomous systems without relying on closed platforms. MiniMax-M2.1 excels in real-world software engineering tasks, including multilingual development and complex workflow automation. It demonstrates strong generalization across agent frameworks and consistently improves upon its predecessor, MiniMax-M2. Benchmarks show that it rivals or approaches top proprietary models while remaining fully open for local deployment and customization.
    Downloads: 14 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next