Showing 7 open source projects for "neural python"

View related business solutions
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Top Corporate LMS for Training | Best Learning Management Software Icon
    Top Corporate LMS for Training | Best Learning Management Software

    Deliver and Track Online Training and Stay Compliant - with Axis LMS!

    Axis LMS enables you to deliver online and virtual learning and training through a scalable, easy-to-use LMS that is designed to enhance your training, automate your workflows, engage your learners and keep you compliant.
    Learn More
  • 1
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    ...PyOD has multiple neural network-based models, e.g., AutoEncoders, which are implemented in both PyTorch and Tensorflow. PyOD contains multiple models that also exist in scikit-learn. It is possible to train and predict with a large number of detection models in PyOD by leveraging SUOD framework. A benchmark is supplied for select algorithms to provide an overview of the implemented models.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++)...
    Downloads: 38 This Week
    Last Update:
    See Project
  • 3
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Real-ESRGAN ncnn Vulkan

    Real-ESRGAN ncnn Vulkan

    NCNN implementation of Real-ESRGAN

    Real-ESRGAN ncnn Vulkan is an optimized, cross-platform implementation of Real-ESRGAN using the ncnn neural network inference engine and Vulkan for hardware acceleration. Unlike the standard PyTorch-based Real-ESRGAN code, this variant is written in C/C++ and designed to run efficiently on many platforms (including Windows, Linux, and possibly Android) without requiring heavy frameworks like CUDA or Python. It provides command-line tools for upscaling images with selected models, allowing users to specify input/output paths, scaling factors, tile sizes, and model names from a compressed model set, which is particularly helpful for larger images or automated workflows. ...
    Downloads: 20 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    Active Learning

    Active Learning

    Framework and examples for active learning with machine learning model

    ...It includes several established active learning strategies such as uncertainty sampling, k-center greedy selection, and bandit-based methods, while also allowing for custom algorithm implementations. The framework integrates with both classical machine learning models (SVM, logistic regression) and neural networks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    This project provides a set of Python tools for creating various kinds of neural networks, which can also be powered by genetic algorithms using grammatical evolution. MLP, backpropagation, recurrent, sparse, and skip-layer networks are supported.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    A neural net module written in python. The aim of the project is to provide a large set of neural network types accessed by an API that is easy to use and powerful.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next