124 projects for "vision" with 2 filters applied:

  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Vision Transformer Pytorch

    Vision Transformer Pytorch

    Implementation of Vision Transformer, a simple way to achieve SOTA

    ...Because it stays close to vanilla PyTorch, you can integrate custom datasets and training loops without framework lock-in. It’s widely used as an educational reference for people learning transformers in vision and as a lightweight baseline for research prototypes. The project encourages experimentation—swap optimizers, change augmentations, or plug the transformer backbone into downstream tasks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Open Vision Agents by Stream

    Open Vision Agents by Stream

    Build Vision Agents quickly with any model or video provider

    Open Vision Agents by Stream is an open source framework from Stream for building real time, multimodal AI agents that watch, listen, and respond to live video streams. It focuses on combining video understanding models, such as YOLO and Roboflow based detectors, with real time large language models like OpenAI Realtime and Gemini Live to create interactive experiences.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeepSeek VL2

    DeepSeek VL2

    Mixture-of-Experts Vision-Language Models for Advanced Multimodal

    DeepSeek-VL2 is DeepSeek’s vision + language multimodal model—essentially the next-gen successor to their first vision-language models. It combines image and text inputs into a unified embedding / reasoning space so that you can query with text and image jointly (e.g. “What’s going on in this scene?” or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to process visual inputs as context for downstream tasks. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    COLMAP

    COLMAP

    Structure-from-Motion and Multi-View Stereo

    COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface. It offers a wide range of features for the reconstruction of ordered and unordered image collections. The software is licensed under the new BSD license.
    Downloads: 57 This Week
    Last Update:
    See Project
  • 6
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    ...The updated model is optimized for faster inference and lower memory use, enabling real-time interactivity even on larger images or constrained hardware. SAM2 comes with pretrained weights and easy-to-use APIs, enabling developers and researchers to integrate promptable segmentation into annotation tools, vision pipelines, or downstream tasks. The project also includes scripts and notebooks to compare SAM2 against SAM on edge cases, benchmarks showing improvements, and evaluation suites to measure mask quality metrics like IoU and boundary error.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    ...The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation across base and target domains to measure how well the model retains its general knowledge while specializing as needed. It includes utilities to fine-tune vision-language embeddings, compute prompt or adapter updates, and benchmark across transfer and retention metrics. MetaCLIP is especially suited for real-world settings where a model must continuously incorporate new visual categories or domains over time.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    MiniMind-V

    MiniMind-V

    "Big Model" trains a visual multimodal VLM with 26M parameters

    MiniMind-V is an experimental open-source project that aims to train a very small multimodal vision–language model (VLM) from scratch with extremely low compute and cost, making research and experimentation accessible to more people. The repository showcases training workflows and code designed to produce a 26-million parameter model—including both image and text capabilities—using minimal resources in very little time, reflecting a trend toward democratizing AI research.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Hiera

    Hiera

    A fast, powerful, and simple hierarchical vision transformer

    Hiera is a hierarchical vision transformer designed to be fast, simple, and strong across image and video recognition tasks. The core idea is to use straightforward hierarchical attention with a minimal set of architectural “bells and whistles,” achieving competitive or superior accuracy while being markedly faster at inference and often faster to train. The repository provides installation options (from source or Torch Hub), a model zoo with pre-trained checkpoints, and code for evaluation and fine-tuning on standard benchmarks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    ...DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. The model supports multiple backbone architectures, including Vision Transformers (ViT), and can handle larger image resolutions with improved stability during training. The learned embeddings generalize robustly across tasks like classification, retrieval, and segmentation without fine-tuning, showing state-of-the-art transfer performance among self-supervised models.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 11
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    ...MiniMax-VL-01 extends this core by adding a 303M-parameter Vision Transformer and a two-layer MLP projector in a ViT–MLP–LLM framework, allowing the model to process images at dynamic resolutions up to 2016×2016.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Segment Anything

    Segment Anything

    Provides code for running inference with the SegmentAnything Model

    ...It’s a promptable segmenter: you guide it with points, boxes, or rough masks, and it predicts high-quality object masks consistent with the prompt. The architecture separates a powerful image encoder from a lightweight mask decoder, so the heavy vision work can be computed once and the interactive part stays fast. A bundled automatic mask generator can sweep an image and propose many object masks, which is useful for dataset bootstrapping or bulk annotation. The repository includes ready-to-use weights, Python APIs, and example notebooks demonstrating both interactive and automatic modes. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T N1.5 is the world's first open foundation model

    NVIDIA Isaac‑GR00T N1.5 is an open-source foundation model engineered for generalized humanoid robot reasoning and manipulation skills. It accepts multimodal inputs—such as language and images—and uses a diffusion transformer architecture built upon vision-language encoders, enabling adaptive robot behaviors across diverse environments. It is designed to be customizable via post-training with real or synthetic data. The vision-language model remains frozen during both pretraining and finetuning, preserving language understanding and improving generalization. Streamlined MLP connection between vision encoder and LLM with added layer normalization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Screenshot to Code

    Screenshot to Code

    A neural network that transforms a design mock-up into static websites

    Screenshot-to-code is a tool or prototype that attempts to convert UI screenshots (e.g., of mobile or web UIs) into code representations, likely generating layouts, HTML, CSS, or markup from image inputs. It is part of a research/proof-of-concept domain in UI automation and image-to-UI code generation. Mapping visual design to code constructs. Code/UI layout (HTML, CSS, or markup). Examples/demo scripts showing “image UI code”.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    GLM-4.1V

    GLM-4.1V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    ...Though smaller in scale, GLM-4.1V maintains competitive performance, particularly impressive on many benchmarks for models of its size: in fact, on a number of multimodal reasoning and vision-language tasks it outperforms some much larger models from other families. It represents a trade-off: somewhat reduced capacity compared to 4.5V or 4.6V, but with benefits in terms of speed, deployability, and lower hardware requirements — making it especially useful for developers experimenting locally, building lightweight agents, or deploying on limited infrastructure. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Model Zoo

    Model Zoo

    Please do not feed the models

    FluxML Model Zoo is a collection of demonstration models built with the Flux machine learning library in Julia. The repository provides ready-to-run implementations across multiple domains, including computer vision, natural language processing, and reinforcement learning. Each model is organized into its own project folder with pinned package versions, ensuring reproducibility and stability. The examples serve both as educational tools for learning Flux and as practical starting points for building new models. GPU acceleration is supported for most models through CUDA integration, enabling efficient training on compatible hardware. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Generative AI

    Generative AI

    Sample code and notebooks for Generative AI on Google Cloud

    ...The README emphasises getting started with prompts, datasets, environments and sample apps, making it ideal for both experimentation and production-ready usage. The repository architecture is organised into folders like gemini/, search/, vision/, audio/, and rag-grounding/, which helps developers locate use cases by modality. It is licensed under Apache-2.0, open­sourced and maintained by Google, meaning it's designed with enterprise-grade practices in mind. Overall, it serves as a practical entry point and reference library for building real-world generative AI systems on Google Cloud.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    VGGT

    VGGT

    [CVPR 2025 Best Paper Award] VGGT

    VGGT is a transformer-based framework aimed at unifying classic visual geometry tasks—such as depth estimation, camera pose recovery, point tracking, and correspondence—under a single model. Rather than training separate networks per task, it shares an encoder and leverages geometric heads/decoders to infer structure and motion from images or short clips. The design emphasizes consistent geometric reasoning: outputs from one head (e.g., correspondences or tracks) reinforce others (e.g., pose...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and action into a single agentic model capable of following abstract goals. It includes simulation environments, datasets, and benchmarks for testing grounded understanding, imitation learning, and decision-making. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    GLM-4.6V

    GLM-4.6V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.6V represents the latest generation of the GLM-V family and marks a major step forward in multimodal AI by combining advanced vision-language understanding with native “tool-call” capabilities, long-context reasoning, and strong generalization across domains. Unlike many vision-language models that treat images and text separately or require intermediate conversions, GLM-4.6V allows inputs such as images, screenshots or document pages directly as part of its reasoning pipeline — and can output or act via tools seamlessly, bridging perception and execution. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations. The design tackles long-standing...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next